
Automatic Testing of Symbolic Execution Engines
via Program Generation and Differential Testing

Timotej Kapus, Cristian Cadar
Department of Computing
Imperial College London

2

 if (x > 2294967295) {

 assert(false);

 }

 printf("x: %u\n", x);

Symbolic execution

● Used in industry:
○ IntelliTest
○ SAGE
○ KLOVER
○ SPF
○ Apollo

● Active research field

3

4

1 unsigned int x = 5;

2 int main() {

3 if (x > 2294967295) {

4 assert(false);

5 }

6 printf("x: %u\n",x);

7 }

Symbolic execution

5

1 unsigned int x = 5;

2 int main() {

3 make_symbolic(&x);

4 if (x > 2294967295) {

5 assert(false);

6 }

7 printf("x: %u\n",x);

8 }

Symbolic execution
x = *

assert(false); printf("x: %d", x);

x > 2294967295

TRUE FALSE

Assertion
fail x: 2

x > 2294967295

x ≤ 2294967295

● Many available open source
● Complex pieces of software

○ Accurate interpreter or precise
instrumentation

○ Accurate constraint solving
○ Constraint gathering
○ Scheduling
○ Effective optimizations such as

caching, fast solving, etc.

Symbolic executors

6

Angr

● Many available open source
● Complex pieces of software

○ Accurate interpreter or precise
instrumentation

○ Accurate constraint solving
○ Constraint gathering
○ Scheduling
○ Effective optimizations such as

caching, fast solving, etc.

Symbolic executors

7

Angr

Bugs in symbolic executors

● Particularly bad
● Lead to false sense of security
● Examples:

○ Missing a branch
○ Exploring spurious branches

8

1 unsigned int x = 5;

2 int main() {

3 make_symbolic(&x);

4 if(x > 2294967295) {

5 assert(false);

6 }

7 printf("x: %u\n",x);

8 }

Differential testing of symbolic execution

9

Randomly generated program

Compile Compile

Execute Symbolically execute

Compare

Testing symbolic executors

● Compare two executions (native/symbolic) in 3
different modes:
○ Concrete - tests interpretation/instrumentation
○ Single Path - tests constraint gathering and solving
○ Multi Path - tests scheduling, test case generation

10

Concrete mode

11

x: 5

x: 343

1 unsigned int x = 5;

2 int main() {

3 if (x > 2294967295) {

4 assert(false);

5 }

6 printf("x: %u\n",x);

7 }

Single-Path mode

12

1 unsigned int x = 5;

2 int main() {

3 make_symbolic(&x);
4 CONSTRAIN(x, 5);
5 if(x > 2294967295) {

6 assert(false);

7 }

8 printf("x: %u\n",x);

9 }

x: 5

Assertion
fail

13

1 unsigned int x = 5;

2 int main() {

3 make_symbolic(&x);
4 CONSTRAIN(x, 5);
5 if(x > 2294967295) {

6 assert(false);

7 }

8 printf("x: %u\n",x);

9 }

x: 5

Assertion
fail

Single-Path mode: Constrainers

CONSTRAIN(x, 5);

if(x < 5) silent_exit(0);

if(x > 5) silent_exit(0);

14

1 unsigned int x = 5;

2 int main() {

3 make_symbolic(&x);
4 CONSTRAIN(x, 5);
5 if(x > 2294967295) {

6 assert(false);

7 }

8 printf("x: %u\n",x);

9 }

x: 5

Assertion
fail

Single-Path mode: Constrainers

CONSTRAIN(x, 5);

if(x != 5) silent_exit(0);

Multi-Path mode

15

1 unsigned int x = 5;

2 int main() {

3 make_symbolic(&x);
4 if(x > 2294967295) {

5 assert(false);

6 }

7 printf("x: %u\n",x);

8 }

Test case:
x = 7

Test case:
x = 23

x: 7
x: 23

x: 7 x: 23

MATCH!

Multi-Path mode

16

int x = 5;

void main() {
 make_symbolic(&x);
 if(x < 0)
 printf("x: %d", -x);
 else
 printf("x: %d", x);
}

Test case:
x = -7

Test case:
x = 23

x: 7
x: -23

x: 7 x: 23

17

Testing symbolic executors
● Built a pipeline
● Run experiments in

batches
● Avoid bugs found in

previous batches

18

Instrumentation supports

● Csmith
○ Random program generator
○ Found many bugs in compilers
○ Doesn’t generate programs with

undefined behaviour
● Instrumentation supports:

○ Marking variables as symbolic
○ Oracles
○ Constraining

19

Versions correspond to mode:
● Concrete mode - native

version
● Single path mode - single path

version
● Multi path mode - multi path

version

20

Oracles can check:
1. Executor doesn’t crash
2. Function call chain
3. Output (values of all global

variables) matches
4. Coverage achieved on the

random program

21

Finally:
● Gather mismatches
● Reduce interesting ones
● Report bugs

Case Studies

KLEE

● Main case study
○ Familiarity
○ Flexibility

● Built on top of LLVM
● Keeps all paths in memory

22

CREST

● Concolic execution
● Instrumentation instead of

interpretation
● Doesn’t generate test cases

FuzzBALL

● Binary level executor
● Doesn’t generate test cases

23

24

1

25

26

27

3

28

0 0 0 0

29

Example bug: Crest

1 unsigned int a;

2 int main() {

3 make_symbolic(&a);

4 if(a > 2294967295) {

5 assert(false);

6 }

7 printf("a: %d\n",a);

8 }

Expected output Actual output

a: 6

Assertion fail

a: 6

a: 23

30

Example bug: KLEE

1 int g_10 = 0;

2 int main() {

3 make_symbolic(&g_10);

4 do {

5 printf("loop\n");

6 g_10 &= 2;

7 } while(!((3 ^ g_10) / 1));

8 }

Expected
output

Actual output

loop loop

loop

loop

loop

loop

loop

loop

...

31

Example bug: FuzzBALL

1 unsigned int g_54 = 0;

2 unsigned int g_56 = 0;

3

4 void main (void) {

5 make_symbolic(&g_54);

6 CONSTRAIN(g_54, 0);

7 g_56 ^= 0 < g_54;

8 printf("g_56: %u\n", *(&g_56));

9 }

Expected
output

Actual output

g_56: 0 Strange term cast
(cast(t2:reg32t)L:reg8t)U:
reg32t ^ 0xbc84814c:reg32t

Conclusions

● Developed techniques that test many aspects of symbolic
executors

● Applied them to 3 different symbolic executors
● Total bugs found:

○ 14 in KLEE
○ 3 in Crest
○ 3 in FuzzBALL

32

33

Constrainers

34

35

36

CREST bug
● 14 in KLEE (9 fixed)
● 3 in Crest (1 fixed)
● 3 in FuzzBALL (3 fixed)

● found within first 5000 runs of
a batch

37

Single-Path Mode

38

Compare native execution, with symbolic execution constrained to the exact
same path as native execution.

Symbolic execution

● Mark some inputs as symbolic
● Runs the program, while gathering constraints on the symbolic

data
● Forks at branch points when both sides are feasible
● Upon hitting a terminal state (ie. error), solves the gathered

constraints, to produce an input leading the program to the
same state

39

40

Configuration includes:
● Program generation options

○ size/complexity of the
program

○ language features to use
● Compilation options
● Mode
● Oracles to use

41

Instrumentation supports
● Marking variables as

symbolic
● Oracles
● Constraining

42

Versions correspond to mode used:
● Concrete mode - native version
● Single path mode - single path

version
● Multi path mode - multi path

version

43

Oracles can check:
1. Executor doesn’t crash
2. Function call chain
3. Output (values of all global

variables) matches
4. Coverage achieved on the

program

44

Finally:
● Gather mismatches
● Reduce interesting ones
● Report bugs

45

1 void foo(unsigned int x) {

2 if(x > 2294967295) {

3 assert(false);

4 }

5 printf("x: %u\n", x);

6 }

Expected output Actual output

x: 6

Assertion fail

x: 6

x: 23

