SOFTWARE RELIABILITY Imperial College
GROUP London

Sparse Symbolic Loop Execution

Frank Busse = Martin Nowack = Cristian Cadar

3" International Fuzzing Workshop
16 September 2024, Vienna

‘%" Faster vs Smarter

NYU

e The history of fuzzing research is
littered with the wreckage of
systems that thought they could
beat “dumb” fuzzers

Core problem: you have to be
very, very smart to beat millions
of exec/s

And scaling up execs/s is a lot

easier than making an anal
smarter!

Symbolic Execution

int strcmp(cnst char *1, cwnst char *r) {
for (; *l==*r && *1; 1++, r++);

Strcmp(* * * * ’ -FOO@) r‘etur‘n *(unsigned char *)1 - >k(unsigned char *)r‘;

£ % %
£ % %

if (!strcmp(s, ’foo”))

e starts with symbolic inputs
® aims to explore as many feasible paths as possible

® uses SMT solver to check path feasibility + error conditions,

and create concrete inputs for selected paths
% unconstrained byte

f byte is not ‘f’
f byte is ‘f’

Symbolic Execution

strcmp (% % % %, f000)

3 ¥ *
3 ¥ %
fo % *
o ¥* *
foo * true branch
foo ¥*

7
’

f000 000 <----""

e 1 + 4 branches to explore

e loops contribute to path explosion

int strcmp(cnst char *1, cwnst char *r) {
for (; *l==*r && *1; 1++, r++);
r‘etur‘n *(unsigned char *)1 - >|<(unsigned char *)r‘;

if (!strcmp(s, ’foo”))

% unconstrained byte
f byte is not ‘f’
f byte is ‘f’

Sparse Symbolic Loop Execution

int strcmp(cnst char *1, cwnst char *r) {
for (; *l==*r && *1; 1++, r++);

Strcmp(* * * * ? -FOO@) r‘etur‘n *(unsigned char *)1 - >k(unsigned char *)r‘;

£ 3% % %*
£ % %
0 ¥* %
o ¥* *
foo *
foo %* if (!strcmp(s, ”fo0”))

foo00 foo0

% unconstrained byte
f byte is not ‘f’
Goal: lose as little coverage as possible. f byte is f’

Idea: pick “interesting” paths and ignore the rest.

Sparse Symbolic Loop Execution

strcmp (% % % %, f000)

if (!strcmp(s, ”foo0”))

% % % puts(“foo”);
£ 3 3% %
fo ¥* x . e
strcmp(fok %, froe) fo ¥ % if (!str‘cmpf((s, ,,ff‘o))
- foo * true branch puts(“fro”);
fo* % fr¥k ¥ foo *
fro% o
fro % fooQ foo0
froo froo
N

true branch

% unconstrained byte
f byte is not ‘f’
f byte is ‘f’

Sparse Symbolic Loop Execution

e statically “taints” all values that could be affected
by a loop

s tainted

K
if (!strcmp(s, *foo”))
puts(“foo™);

if (!strcmp(s, *fro”))
puts(“fro”);

Sparse Symbolic Loop Execution

e statically “taints” all values that could be affected s tainted
by a loop

e computes loop-impact barriers, where no relevant e (Istrcmp(s’/,,{oo,,))
decision points can be reached anymore ' puts(“ﬂ’)o,,);

if (!strcmp(s, *fro”))
puts(“fro”); «

LN
N

barriers

Sparse Symbolic Loop Execution

e tracks behaviour (branch) at decision points up to barrier

e filters states (paths) at barriers according to the uniqueness
of their behaviour at relevant decision points

Path if, if
000 true false
froo false true
f¥**x%x, ..., fooQ false false

y
/

’
1

keep only one or sample eg Ist, 2nd, 4th,

s tainted

-
-

K
if (!strcmp(s, *foo0”))
puts(“foo™);

if (!strcmp(s, *fro”))
puts(“fro”); «

\

barriers

Research Questions

RQ1: Is SSLE an effective approach to postpone or filter states, thereby reducing path
explosion?

RQ2: How does SSLE compare to less complex approaches?

10

Planned Evaluation

Prototype

e SparKLE implemented on top of KLEE (https://klee-se.org/)

Benchmarks

e ~50 benchmarks (Binutils, Coreutils, diff, gawk, gcal, gmake, gzip, libsndfile, libtiff, libxml)

e 1hr, 4GiB memory limit for symbolic executor

11

https://klee-se.org/

Planned Evaluation - Efficacy

RQ1
e comparison (coverage) against KLEE
e DFS search heuristic, several combinations of configuration flags

tainting thresholds X filter strategies X state revival rate

tainting threshold taint x functions along call stack and y functions down call graph
filter strategy either keep only one witness or use bucketing approach (1, 2, 4, 8, ...)
revival rate select n% of states from postponed set

e rndcov search heuristic, 2 "best” DFS configurations, random subset of 10 benchmarks, 100 repetitions

12

Planned Evaluation - Lightweight Approaches

RQ2

Fixed Decision Points
e no taint analysis, just (configurable) fixed number of observed decision points
e proposed decision points limits: 1, 2, 4, 8, 16, 32, 64, 128, 256

e DFS search heuristic

Simple
e no taint analysis, no decision point tracking
e only sample paths based on iteration count (0, 1, 2, 3, 4, 8, 16, ..., n)

e DFS search heuristic

13

Preliminary Results - Relative Coverage (DFS)

20 +

Coverage change (%)

|
N
=)

!
‘ . added coverage

[. missed coverage
[

11(1 3.2
-3.31 7.7

|
|
|
|
|
|
|
IIIII(‘ II
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |

59 o 28 <16 07 | o ; = i5
. K. 25 3 g H
I I 00 16 -1.0 -0.7 27 07 01 13 -2.2 I I I I 1.3 i I I g I i 1.4 I

! | ! | I ! I I ! I L |

T T T T T T T T T T T T

simple 4 8 16 32 64 128 256 1/0 1/1 1/2 1/3 2/0 2/1 2/2 2/3 3/0 3/1 3/2 3/3 4/0 4/1 4/2 4/3 1/0 1/1 1/2 2/0 2/1 2/2 1/1 2/0 2/1 2/2 1/1 2/0 2/1 2/2 1/1 2/0 2/1

2/2

1/1 2/0 2/1 2/2

fixed, one, 0% one, 0% binary, 0% one, 10% binary, 10% one, 20%

binar;/, 20%

14

Preliminary Results - Relative Coverage (DFS)

20 +

Coverage change (%)

|
N
=)

| 95 3% of states postponed
‘ . added coverage P P

[. missed coverage
[

\
\
\
!
!
L1 0.2 ' 60 -3 M
831 T AR 2 ‘ o 1.0 0L 55 .. L5 025
‘ ““ 0.0 90 1.6 -1.0 6 27 07 01 13 -22 18 :.n 1.1 i34 22 22 ., 11 44 18 23 |
III S IITTILITT agrgsgppse]aan]ae :
[[
[[
\ |
[\
[\
\ \
[!
[[
| | I | | 1 1 L ! L | | I !
— - : —
Simpl€4 8 16 32 64 128 256 1/0 1/1 1/2 1/3 2/0 2/1 2/2 2/3 3/0 3/1 3/2 3/3 4/0 4/1 4/2 4/3 1/0 1/1 1/2 2/0 2/1 2/2 1/1 2/0 2/1 2/2 1/1 2/0 2/1 2/2 1/1 2/0 2/1 2/2 1/1 2/0 2/1 2/2

fixed, one, 0% one, 0% binary, 0% one, 10% binary, 10% one, 20% binary, 20%

15

Sparse Symbolic Loop Execution

e tracks behaviour (branch) at decision points up to barrier s tainted
e filters states (paths) at barriers according to the uniqueness L,
c . s . ¥
of their behaviour at relevant decision points 1£ (Istremp(s, £00))
puts(“foo”);

klee-se.org

i 3 diES((llsERemp (SHIEiERoR)))
Path l-Ffoo 1ffr0 puts(“Fr‘o”); S
foo00 true false .

Ty Loops Symbolic
froo false true vantirs detected reached symbolic branches
fw¥¥, ..., fooQ false false min 102 38 4 49

o mean 373 76 14 665,711
/ max 1,517 238 27 7,097,544

keep only one or sample eg Ist, 2nd, 4+h,

20 1 ! . added coverage

. missed coverage

5.9 2.8 -1.6 -0.7
0.0 1.6

-1.1
0.1 15 -0.2
7 , ~ 1.0) s - N
10 -11 g7 16 57 2.2 I\sillll)lli:hl' Iillii]

Coverage change (%)
(=)

 ——
IR
ECE——
-
—

[-

o

|
[\
S

simple 4 8 16 32 64 128 256 1/0 1/1 1/2 1/3 2/0 2/1 2/2 2/3 3/0 3/1 3/2 3/3 4/0 4/1 4/2 4/3 1/0 1/1 1/2 2/0 2/1 2/2 1/1 2/0 2/1 2/2 1/1 2/0 2/1 2/2 1/1 2/0 2/1 2/2 1/1 2/0 2/1 2/2

fixed, one, 0% one, 0% binary, 0% one, 10% binary, 10% one, 20% binary, 20%

