
Petr Hosek
p.hosek@imperial.ac.uk Imperial College London

Matteo Migliavacca
migliava@doc.ic.ac.uk Imperial College London

Ioannis Papagiannis
ip108@doc.ic.ac.uk Imperial College London

David M. Eyers
dme@cs.otago.ac.nz University of Otago

David Evans
david.evans@cl.cam.ac.uk University of Cambridge

Brian Shand
brian.shand@cbcu.nhs.uk ECRiC, NHS

Jean Bacon
jean.bacon@cl.cam.ac.uk University of Cambridge

Peter Pietzuch
p.pietzuch@imperial.ac.uk Imperial College London

1

SAFEWEB
A Middleware for Securing Ruby-Based Web Applications

mailto:p.hosek@imperial.ac.uk
mailto:p.hosek@imperial.ac.uk
mailto:migliava@doc.ic.ac.uk
mailto:migliava@doc.ic.ac.uk
mailto:ip108@doc.ic.ac.uk
mailto:ip108@doc.ic.ac.uk
mailto:dme@cs.otago.ac.nz
mailto:dme@cs.otago.ac.nz
mailto:david.evans@cl.cam.ac.uk
mailto:david.evans@cl.cam.ac.uk
mailto:brian.shand@cbcu.nhs.uk
mailto:brian.shand@cbcu.nhs.uk
mailto:jean.bacon@cl.cam.ac.uk
mailto:jean.bacon@cl.cam.ac.uk
mailto:p.pietzuch@imperial.ac.uk
mailto:p.pietzuch@imperial.ac.uk

Data confidentiality

Focus on applications processing sensitive data
Requirements regarding compliance with legal policies

Problem of controlling all data flows
Data protection across multiple layers at different granularities

Common threat model:
1. External environment is hostile
2. Application code is not explicitly malicious
3. Threats might be caused by bugs in implementation

2

in enterprise web applications

3

Real-world case study

Provide web portal for accessing patient records
Make patient records accessible for review and feedback purposes

Strict security policy requirements:
1. Statistics & metric accessible to all staff
2. Patient details accessible only to patient treating staff

Current best practices are insufficient
Expensive and error-prone source code auditing
Limited exposure of collected data

4

Database

External website

Aggregation Portal

Collecting patient data

Accessing records & metrics

Aggregating data

Intranet DMZ Internet

Processing collected records

1. Confidential data should be protected end-to-end
2. Access to confidential data by external users should be static & one-way

Contributions

SAFEWEB middleware for end-to-end data protection
Uses information flow control for data tracking
Guarantees data confidentiality and integrity

Mechanisms for data tracking at different granularities
Enforcement of data protection at event and variable levels
Efficient implementation using Ruby dynamic programming features

Real-world evaluation in a healthcare environment
Developed & deployed in collaboration with UK National Health Service (NHS)

5

OUTLINE

motivation & contribution
information flow control

SAFEWEB architecture
label propagation

real-world case study
evaluation

conclusions

6

7

Information flow control

Protects the propagation of data
Attaching security labels to data and tracking their propagation

Bell, D., LaPadula, L.: Secure computer system: Unified exposition and Multics interpretation (1976)

{ecric.org.uk/patient} {ecric.org.uk/patient/*}

C1 can output event iff {ecric.org.uk/patient} ⊆ {ecric.org.uk/patient/120820455}
C2 can input event iff {ecric.org.uk/patient/120820455} ⊆ {ecric.org.uk/patient/*}

C1 C2

[forenames: "Evalyn", surname: "Waters", ...] {ecric.org.uk/patient/120820455}
Data Labels

Output labels Input labels

Send

8

Database

External website

Aggregation Portal

Intranet DMZ Internet

1. Confidential data should be protected end-to-end
2. Access to confidential data by external users should be static & one-way

Event-based
back-end

Web presentation
front-end

9

Database

External website

Intranet DMZ Internet

Event back-end

Data
aggregator

Data
storage

Data
labelling

1. Confidential data should be protected end-to-end
2. Access to confidential data by external users should be static & one-way

SEND
destination: /queues/patient_report
type: cancer
content-type: text/plain
content-length:
confidentiality: label:conf:ecric.org.uk/patient/12
integrity: label:int:ecric.org.uk/hospital/9033

{ "forenames":"Evalyn ", "surname":"Waters" ... }^@

Event-based
communication

Portal

10

Database

External website

Intranet DMZ Internet

Event back-end

Data
storage

Data
labelling

Event broker

1. Confidential data should be protected end-to-end
2. Access to confidential data by external users should be static & one-way

Event dispatch & filtering
SEND
destination: /queues/patient_report
type: cancer
content-type: text/plain
content-length:
confidentiality: label:conf:ecric.org.uk/patient/12
integrity: label:int:ecric.org.uk/hospital/9033

{ "forenames":"Evalyn ", "surname":"Waters" ... }^@

Portal
Data

aggregator

Event back-end

Support & control of unit execution
Checking and tracking events security labels
Prevent units from disclosing confidential data

Tracking the security labels at the level of events
Simple event data model using set of key-value attribute pairs and data payload
STOMP-based event protocol extended with support for security labels

Enforces unit sandboxing & isolation
Controlling the use of all I/O operations
Preventing access to variables outside of local scope

11

list = get 'patient_list' << event.patient
puts $patients << event.patient
publish '/daily_report', list, :add => ['label:conf:ecric.org.uk/patient_list']

Accessing global variable & I/O operation

12

Database

External website

Portal

Intranet DMZ Internet

Event back-end

Data
storage

Data
labelling

1. Confidential data should be protected end-to-end
2. Access to confidential data by external users should be static & one-way

Event broker

Data
aggregator

Web front-end

13

Database

External website

Intranet DMZ Internet

Event back-end

Data
storage

Data
labelling

Portal

Web
Database

1. Confidential data should be protected end-to-end
2. Access to confidential data by external users should be static & one-way

get '/record/:record' do
 @record = SomersetRecord.find(params[:record])
 erb <<-EOS
 ...
 <input id="Forenames" value="<%= @record.forenames %>" />
 <input id="surname" value="<%= @record.surname %>" />
 ...
 EOS
end Taint-tracking

Event broker

Data
aggregator

Web front-end

14

Database

External website

Intranet DMZ Internet

1. Confidential data should be protected end-to-end
2. Access to confidential data by external users should be static & one-way

Event back-end

Data
storage

Data
labelling

Portal

Web
Database

Event broker

Application
Database

Application
Database

Replication

{
 "forenames": "Evalyn",
 "surname": "Waters",
 ...
 "label": {
 "confidentiality": [
 "label:conf:ecric.org.uk/patient/12
],
 "integrity": [
 "label:int:ecric.org.uk/hospital/9033"
]
 }
}

Data
aggregator

Presents results from back-end to users
Sinatra-based web framework with traditional database-driven architecture

Enforces data flow control
Using data security labels assigned by data processing units

Taint tracking at the level of variables
Associating security labels with individual variables
Checking labels on HTTP response

@name = @patient.forenames + " " + @patient.surname
@name.add_tags! ['label:ecric.org.uk/patient/fullname']
erb "<input id='name' value='<%= @name >' />"

Web front-end

15

Taint propagation

Label propagation

SAFEWEB uses unmodified Ruby runtime
Avoiding unnecessary code transformations
Simplified deployment & maintenance

Sandboxing & isolation through Ruby $SAFE levels
Simple taint-tracking mechanism with set of predefined levels

Exploiting Ruby’s meta-programming features
Using Rubinius meta-circular Ruby VM implementation

16

A. Yip et al. Improving Application Security with Data Flow Assertions
S. Naira et al. A Virtual Machine Based Information Flow Control System for Policy Enforcement

without runtime or code modification

id = measurement[:id]
report = Report.new(measurement)

subscribe "/queues/measurements/#{id}/cancer_cases" do |event|
 report.append event
end

subscribe '/queues/measurements/release' do |timestamp|
 report.mark timestamp
 publish '/queues/reports', report
end

17

Part of data aggregator unit
Snippet of patient record aggregation logic

id = measurement[:id]
report = Report.new(measurement)

subscribe "/queues/measurements/#{id}/cancer_cases" do |event|
 report.append event
end

subscribe '/queues/measurements/release' do |timestamp|
 report.mark timestamp
 publish '/queues/reports', report
end

tainted with
event labels

18

Part of data aggregator unit
Snippet of patient record aggregation logic

labels attached on publish

id = measurement[:id]
report = Report.new(measurement)

subscribe "/queues/measurements/#{id}/cancer_cases" do |event|
 report.append event
end

subscribe '/queues/measurements/release' do |timestamp|
 report.mark timestamp
 publish '/queues/reports', report
end

19

possible
data disclosure

bounded
variable

Part of data aggregator unit
Snippet of patient record aggregation logic

tainted with
event labels

labels attached on publish

id = measurement[:id]
report = Report.new(measurement)

subscribe "/queues/measurements/#{id}/cancer_cases" do |event|
 report.append event
end

subscribe '/queues/measurements/release' do |timestamp|
 report.mark timestamp
 publish '/queues/reports', report
end

20

def subscribe(method_name, &block)
 binding = block.binding
 binding.proc_environment.make_independent

 define_method(method_name, &block)
 unbound_method = instance_method method_name
 @subscriptions[method_name] = proc {
 unbound_method.bind(self).call
 }
end

Part of data aggregator unit
Snippet of patient record aggregation logic

Rubinius API

possible
data disclosure

bounded
variable

tainted with
event labels

labels attached on publish

id = measurement[:id]
report = Report.new(measurement)
set id, report

subscribe "/queues/measurements/#{id}/cancer_cases" do |event|
 report = get id
 report.append event
 set id, report
end

subscribe '/queues/measurements/release' do |timestamp|
 report = get id
 report.mark timestamp
 publish '/queues/reports', report
end

21

Part of data aggregator unit
Snippet of patient record aggregation logic

tainted with
event labels

labels attached on publish

tainted with stored data labels

22

Real-world case study

Eastern Cancer Registry and Information Centre (ECRiC)
Collects histories of cancer cases in the East of England

Aims to provide patient records feedback application
Following the existing data protection & security requirements

Compatibility with existing production environment
No changes at organisational or infrastructure level
Reusing the components of existing system implemented in Ruby

in a healthcare organisation

Taint tracking

23

Cancer
Database

External website

ECRiC Intranet ECRiC DMZ NHS N3

Event back-end Event back-end

Data
storage

Data
labelling

Web front-end

Web
Database

Event broker

Application
Database

Application
Database

Within ECRiC
Real-world deployment

Data
aggregator

24

Security improvements

Prevents common vulnerabilities (from CVE database)

Only a small trusted code-base requires code audit

25

type of vulnerability related CVE reports

omitted access checks 2011-0701, 2010-2353, 2010-0752

errors in access checks 2011-0449, 2010-3092, 2010-4403

inappropriate access checks 2010-4775, 2009-2431

design errors 2011-0899, 2010-3933

3121 LOC feedback portal
2841 LOC unprivileged code
 280 LOC privileged code

0

50

100

150

200

Event processing Webpage rendering

180ms

84ms

158ms

73ms

p
ro

ce
ss

in
g

ti
m

e
in

 m
s

+15%
without IFC
with IFC

Taken on AMD Opteron 6136 2.4GHz, 16GiB of RAM, Ubuntu 10.04
Measured the time to handle/process 1000 requests/events

webpage rendering latency

26

+14% event processing latency

0

1125

2250

3375

4500

Event processing

3817

4455

n
u

m
b

er
 o

f e
ve

n
ts

 p
er

 s
ec

o
n

d
-17%

without IFC
with IFC

Taken on AMD Opteron 6136 2.4GHz, 16GiB of RAM, Ubuntu 10.04
Sampled throughput once per second for 1000 seconds

event processing throughput

27

28

Conclusions

Control over data flows in enterprise web applications
Data protection across multiple layers at different granularities

Strong end-to-end security guarantees
Application of information flow control to both back-end & front-end

The importance of efficient isolation as lesson learned
Necessary to ensure data protection & prevent undisclosed data leaks

Real-world demonstration in a healthcare environment
Part of a web application for assisting cancer treatment practices within the UK NHS

SAFEWEB, part of the EPSRC-funded SmartFlow project
http://smartflow.org/safeweb

http://smartflow.org/safeweb
http://smartflow.org/safeweb

29

Related work

Taint tracking for Ruby on Rails web application framework
Burket, J., Mutchler, P., Weaver, M., Zaveri, M., Evans, D.: GuardRails: A data-centric web application security framework (2011)

Taint tracking using fine grained policy objects and source code rewriting
Yip, A., Wang, X., Zeldovich, N., Kaashoek, M. F.: Improving Application Security with Data Flow Assertions (2009)

Using Java bytecode rewriting to propagate labels
Yoshihama, S., Yoshizawa, T., Watanabe, Y. Kudoh, M. Oyanagi, K.: Dynamic Information Flow Control Architecture for Web
Applications (2007)

Java thread isolation allowing communication only through labeled data
Migliavacca, M., Papagiannis, I., Eyers, D., Shand, B., Bacon, J., Pietzuch, P.: High-performance event processing with information
security (2010)

JVM runtime modifications to support label tracking
Roy, I., Porter, D., Bond, M., McKinley, K., Witchel, E.: Laminar: Practical fine-grained decentralized information flow control (2009)

