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Symbolic Execution
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● Program analysis technique
● Active research area
● Used in industry

○ IntelliTest, SAGE
○ KLOVER Angr



Why symbolic execution?
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● No false positives!
○ Every bug found has a concrete 

input triggering it 
● Can interact with the environment 

○ I/O, unmodeled libraries
● Only relevant code executed 

“symbolically”, the rest is fast “native” 
execution



Why (not) symbolic execution?
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● Scalability, scalability, scalability
○ Constraint solving is hard
○ Path explosion



This talk

5

Introduce pending constraints which enhance the 
scalability of symbolic execution via aggressively tackling 
paths that are known to be feasible.



“known to be feasible”
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Caching

● Cache assignments from 
previous solver queries

● Already widely adopted

Seeding

● External, usually valid 
concrete  inputs

● Used to bootstrap symbolic 
execution

● From test-suites, examples, 
production data



Symbolic execution example: get_sign

7

int get_sign(int x) {

    int r = -1;

    if (x >= 1) r = 1;

    if (x == 0) r = 0;

    return r;

}
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}
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Known assignments

∅
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Symbolic execution with pending constraints
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int get_sign(int x) {
    int r = -1;
    if (x >= 1) r = 1;
    if (x == 0) r = 0;
    return r;
}

● Explore paths that are known 
to be feasible

● Solve constraints only when 
necessary to make progress
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● Not known to be feasible
● When only pending 
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x ≠ 0
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int get_sign(int x) {

    int r = -1;

    if (x >= 1) r = 1;
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Pending constraints: still not known if feasible



x = 0

32

int get_sign(int x) {

    int r = -1;

    if (x >= 1) r = 1;

    if (x == 0) r = 0;

    return r;

}
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Pending constraints: why would they be useful?
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char msg[8] = symbolic;
uint32_t *hash = md5(msg, 8);
assert(hash[0] == 1471037522)

● Reversing md5 hash
○ Very hard for SMT solvers

● 1471037522 = md5("ase2020")[0] 

○ Use as seed
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Suppose this exploration tree for md5
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Suppose this path

 md5("ase2020")
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Solver queries: 0

Pending Vanilla
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Solver queries: 0
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Solver queries: 1
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Solver queries: 2

Pending Vanilla

ase
20

20



49

Solver queries: 3
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Solver queries: 4
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Solver queries: 5
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Solver queries: 6
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Solver queries: 7
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Solver queries: 8 
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Why pending constraints? 
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● More efficient use of solver solutions
○ Explore more instructions per query
○ Less time solving infeasible queries

● Prefers deeper search tree exploration
● Empowering search heuristics

○ Control over constraint solving
○ ZESTI



Evaluation

● Based on an implementation in KLEE
● 8 real world applications
● Hard targets for symbolic execution
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makem4
bc

datamash



Experiment design
● 2 hour runs
● With and without seeds
● 3 search strategies: random path, DFS, depth biased
● 3 repetitions

● Case study on SQLite3 with 24 hour runs
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Vanilla vs Pending without seeds (random path)
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Proportion of time spent solving queries that were infeasible
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SQLite3: 24 hour run without seeds (random path)
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Vanilla vs Pending with seeds (random path)
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SQLite3: 24 hour run with seed
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ZESTI and seeding
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● Extension of KLEE for 
augmenting test suites

● Explores paths “around” a seed
● Easy to implement with 

pending constraints
● Found 2 bugs in tar, 

dwarfdump that were fixed

ICSE 2012



Conclusion

● Pending constraints
○ Tackles scalability of symbolic execution by aggressively 

following paths that are known to be feasible
● Effective in improving coverage for 8 challenging programs
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Without seeds
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Time spent constraint solving by vanilla KLEE
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