
Pending Constraints in Symbolic Execution
for Better Exploration and Seeding

Timotej Kapus Frank Busse Cristian Cadar
Imperial College London

1

Symbolic Execution

2

● Program analysis technique
● Active research area
● Used in industry

○ IntelliTest, SAGE
○ KLOVER Angr

Why symbolic execution?

3

● No false positives!
○ Every bug found has a concrete

input triggering it
● Can interact with the environment

○ I/O, unmodeled libraries
● Only relevant code executed

“symbolically”, the rest is fast “native”
execution

Why (not) symbolic execution?

4

● Scalability, scalability, scalability
○ Constraint solving is hard
○ Path explosion

This talk

5

Introduce pending constraints which enhance the
scalability of symbolic execution via aggressively tackling
paths that are known to be feasible.

“known to be feasible”

6

Caching

● Cache assignments from
previous solver queries

● Already widely adopted

Seeding

● External, usually valid
concrete inputs

● Used to bootstrap symbolic
execution

● From test-suites, examples,
production data

Symbolic execution example: get_sign

7

int get_sign(int x) {

 int r = -1;

 if (x >= 1) r = 1;

 if (x == 0) r = 0;

 return r;

}

8

int get_sign(int x) {

 int r = -1;

 if (x >= 1) r = 1;

 if (x == 0) r = 0;

 return r;

}

get_sign(x);

Known assignments

∅

9

int get_sign(int x) {

 int r = -1;

 if (x >= 1) r = 1;

 if (x == 0) r = 0;

 return r;

}

get_sign(x);

r = -1;

Known assignments

∅

10

int get_sign(int x) {

 int r = -1;

 if (x >= 1) r = 1;

 if (x == 0) r = 0;

 return r;

}

get_sign(x);

x >= 1

r = -1;

Known assignments

∅

11

int get_sign(int x) {

 int r = -1;

 if (x >= 1) r = 1;

 if (x == 0) r = 0;

 return r;

}

get_sign(x);

x >= 1

r = -1;

Known assignments

x = -2

Known assignments

x = -2

x < 1

12

int get_sign(int x) {

 int r = -1;

 if (x >= 1) r = 1;

 if (x == 0) r = 0;

 return r;

}

get_sign(x);

x >= 1

r = -1;

Known assignments

x = -2

Known assignments

x = -2
x = 7

x ≥ 1x < 1

13

int get_sign(int x) {

 int r = -1;

 if (x >= 1) r = 1;

 if (x == 0) r = 0;

 return r;

}

get_sign(x);

x >= 1

x == 0

x < 1

r = -1;

Known assignments

x = -2
x = 7

x ≥ 1

14

int get_sign(int x) {

 int r = -1;

 if (x >= 1) r = 1;

 if (x == 0) r = 0;

 return r;

}

get_sign(x);

x >= 1

x == 0

x < 1

r = -1;

Known assignments

x = -2
x = 7

x ≠ 0

x ≥ 1

15

int get_sign(int x) {

 int r = -1;

 if (x >= 1) r = 1;

 if (x == 0) r = 0;

 return r;

}

get_sign(x);

x >= 1

x == 0

x < 1

x = 0

r = -1;

Known assignments

x = -2
x = 7
x = 0

x = 0x ≠ 0

x ≥ 1

16

int get_sign(int x) {

 int r = -1;

 if (x >= 1) r = 1;

 if (x == 0) r = 0;

 return r;

}

get_sign(x);

x >= 1

x == 0

x < 1

x = 0

r = -1;

r = 0;

Known assignments

x = -2
x = 7
x = 0

x = 0x ≠ 0

x ≥ 1

17

int get_sign(int x) {

 int r = -1;

 if (x >= 1) r = 1;

 if (x == 0) r = 0;

 return r;

}

get_sign(x);

x >= 1

x == 0

x < 1

x = 0

r = -1;

r = 0;

return r;

Known assignments

x = -2
x = 7
x = 0

x ≠ 0

x ≥ 1

18

int get_sign(int x) {

 int r = -1;

 if (x >= 1) r = 1;

 if (x == 0) r = 0;

 return r;

}

get_sign(x);

x >= 1

x == 0

x < 1

x = 0x ≠ 0

r = -1;

return r;

r = 0;

return r;

Known assignments

x = -2
x = 7
x = 0

x ≥ 1

19

int get_sign(int x) {

 int r = -1;

 if (x >= 1) r = 1;

 if (x == 0) r = 0;

 return r;

}

get_sign(x);

x >= 1

x == 0

x ≥ 1x < 1

x = 0x ≠ 0

r = -1;

r = 1;

return r;

r = 0;

return r;

Known assignments

x = -2
x = 7
x = 0

20

int get_sign(int x) {

 int r = -1;

 if (x >= 1) r = 1;

 if (x == 0) r = 0;

 return r;

}

get_sign(x);

x >= 1

x == 0

x == 0

x ≥ 1x < 1

x = 0x ≠ 0

r = -1;

r = 1;

return r;

r = 0;

return r;

Known assignments

x = -2
x = 7
x = 0

21

int get_sign(int x) {

 int r = -1;

 if (x >= 1) r = 1;

 if (x == 0) r = 0;

 return r;

}

get_sign(x);

x >= 1

x == 0

x == 0

x ≥ 1x < 1

x = 0x ≠ 0

r = -1;

r = 1;

return r;

r = 0;

return r;

Known assignments

x = -2
x = 7
x = 0 x = 0

22

int get_sign(int x) {

 int r = -1;

 if (x >= 1) r = 1;

 if (x == 0) r = 0;

 return r;

}

get_sign(x);

x >= 1

x == 0

x == 0

x ≥ 1x < 1

x = 0x ≠ 0

r = -1;

r = 1;

return r;

r = 0;

return r;

Known assignments

x = -2
x = 7
x = 0 x = 0x ≠ 0

23

int get_sign(int x) {

 int r = -1;

 if (x >= 1) r = 1;

 if (x == 0) r = 0;

 return r;

}

get_sign(x);

x >= 1

x == 0

x == 0

x ≥ 1x < 1

x ≠ 0
x = 0x ≠ 0

r = -1;

r = 1;

return r;return r;

r = 0;

return r;

Known assignments

x = -2
x = 7
x = 0 x = 0

Symbolic execution with pending constraints

24

int get_sign(int x) {
 int r = -1;
 if (x >= 1) r = 1;
 if (x == 0) r = 0;
 return r;
}

● Explore paths that are known
to be feasible

● Solve constraints only when
necessary to make progress

25

int get_sign(int x) {

 int r = -1;

 if (x >= 1) r = 1;

 if (x == 0) r = 0;

 return r;

}

get_sign(x);

Known assignments

∅

26

int get_sign(int x) {

 int r = -1;

 if (x >= 1) r = 1;

 if (x == 0) r = 0;

 return r;

}

get_sign(x);

r = -1;

Known assignments

∅

27

int get_sign(int x) {

 int r = -1;

 if (x >= 1) r = 1;

 if (x == 0) r = 0;

 return r;

}

get_sign(x);

x >= 1

r = -1;

Known assignments

∅

x ≥ 1x < 1

28

int get_sign(int x) {

 int r = -1;

 if (x >= 1) r = 1;

 if (x == 0) r = 0;

 return r;

}

get_sign(x);

x >= 1

r = -1;

Known assignments

∅

x ≥ 1x < 1

Pending constraints

● Not known to be feasible
● When only pending

constraints left
○ Pick one and check

29

int get_sign(int x) {

 int r = -1;

 if (x >= 1) r = 1;

 if (x == 0) r = 0;

 return r;

}

get_sign(x);

x >= 1

x < 1

r = -1;

Known assignments

x = -2

x ≥ 1

30

int get_sign(int x) {

 int r = -1;

 if (x >= 1) r = 1;

 if (x == 0) r = 0;

 return r;

}

get_sign(x);

x >= 1

x == 0

x < 1

r = -1;

Known assignments

x = -2

x ≥ 1

x = 0x ≠ 0

x ≠ 0

31

int get_sign(int x) {

 int r = -1;

 if (x >= 1) r = 1;

 if (x == 0) r = 0;

 return r;

}

get_sign(x);

x >= 1

x == 0

x < 1

r = -1;

Known assignments

x = -2

x ≥ 1

x = 0

Pending constraints: still not known if feasible

x = 0

32

int get_sign(int x) {

 int r = -1;

 if (x >= 1) r = 1;

 if (x == 0) r = 0;

 return r;

}

get_sign(x);

x >= 1

x == 0

r = -1;

x ≥ 1

x ≠ 0

Pending constraints: known feasible path!

Known assignments

x = -2

x < 1

33

int get_sign(int x) {

 int r = -1;

 if (x >= 1) r = 1;

 if (x == 0) r = 0;

 return r;

}

get_sign(x);

x >= 1

x == 0

x < 1

r = -1;

Known assignments

x = -2

x ≥ 1

x = 0x ≠ 0

return r;

34

int get_sign(int x) {

 int r = -1;

 if (x >= 1) r = 1;

 if (x == 0) r = 0;

 return r;

}

get_sign(x);

x >= 1

x == 0

x < 1

r = -1;

Known assignments

x = -2 x ≠ 0

return r;

x ≥ 1

x = 0

Only pending constraints: check one

35

int get_sign(int x) {

 int r = -1;

 if (x >= 1) r = 1;

 if (x == 0) r = 0;

 return r;

}

get_sign(x);

x >= 1

x == 0

x < 1

x = 0x ≠ 0

r = -1;

return r;

r = 0;

return r;

Known assignments

x = -2
x = 0

x ≥ 1

36

int get_sign(int x) {

 int r = -1;

 if (x >= 1) r = 1;

 if (x == 0) r = 0;

 return r;

}

get_sign(x);

x >= 1

x == 0

x ≥ 1x < 1

x = 0x ≠ 0

r = -1;

r = 1;

return r;

r = 0;

return r;

Known assignments

x = -2
x = 0
x = 7

37

int get_sign(int x) {

 int r = -1;

 if (x >= 1) r = 1;

 if (x == 0) r = 0;

 return r;

}

get_sign(x);

x >= 1

x == 0

x == 0

x ≥ 1x < 1

x = 0x ≠ 0
x = 0x ≠ 0

r = -1;

r = 1;

return r;

r = 0;

return r;

Known assignments

x = -2
x = 0
x = 7

38

int get_sign(int x) {

 int r = -1;

 if (x >= 1) r = 1;

 if (x == 0) r = 0;

 return r;

}

get_sign(x);

x >= 1

x == 0

x == 0

x ≥ 1x < 1

x = 0x ≠ 0
x = 0x ≠ 0

r = -1;

r = 1;

return r;

r = 0;

return r;

Known assignments

x = -2
x = 0
x = 7

return r;

39

int get_sign(int x) {

 int r = -1;

 if (x >= 1) r = 1;

 if (x == 0) r = 0;

 return r;

}

get_sign(x);

x >= 1

x == 0

x == 0

x ≥ 1x < 1

x = 0x ≠ 0
x = 0x ≠ 0

r = -1;

r = 1;

return r;return r;

r = 0;

return r;

Known assignments

x = -2
x = 0
x = 7

Pending constraints: why would they be useful?

40

char msg[8] = symbolic;
uint32_t *hash = md5(msg, 8);
assert(hash[0] == 1471037522)

● Reversing md5 hash
○ Very hard for SMT solvers

● 1471037522 = md5("ase2020")[0]

○ Use as seed

41

Suppose this exploration tree for md5

42

Suppose this path

 md5("ase2020")

43

Solver queries: 0

Pending Vanilla

44

Solver queries: 0

Pending Vanilla

ase
20

20

45

Solver queries: 0

Pending Vanilla

ase
20

20

46

Solver queries: 0

Pending Vanilla

ase
20

20

47

Solver queries: 1

Pending Vanilla

ase
20

20

48

Solver queries: 2

Pending Vanilla

ase
20

20

49

Solver queries: 3

Pending Vanilla

ase
20

20

50

Solver queries: 4

Pending Vanilla

ase
20

20

51

Solver queries: 5

Pending Vanilla

ase
20

20

52

Solver queries: 6

Pending Vanilla

ase
20

20

53

Solver queries: 7

Pending Vanilla

ase
20

20

54

Solver queries: 8

Pending Vanilla

ase
20

20
ase

20

20

Why pending constraints?

55

● More efficient use of solver solutions
○ Explore more instructions per query
○ Less time solving infeasible queries

● Prefers deeper search tree exploration
● Empowering search heuristics

○ Control over constraint solving
○ ZESTI

Evaluation

● Based on an implementation in KLEE
● 8 real world applications
● Hard targets for symbolic execution

56

makem4
bc

datamash

Experiment design
● 2 hour runs
● With and without seeds
● 3 search strategies: random path, DFS, depth biased
● 3 repetitions

● Case study on SQLite3 with 24 hour runs

57

Vanilla vs Pending without seeds (random path)

58

Proportion of time spent solving queries that were infeasible

59

SQLite3: 24 hour run without seeds (random path)

60

Vanilla vs Pending with seeds (random path)

61

SQLite3: 24 hour run with seed

62

ZESTI and seeding

63

● Extension of KLEE for
augmenting test suites

● Explores paths “around” a seed
● Easy to implement with

pending constraints
● Found 2 bugs in tar,

dwarfdump that were fixed

ICSE 2012

Conclusion

● Pending constraints
○ Tackles scalability of symbolic execution by aggressively

following paths that are known to be feasible
● Effective in improving coverage for 8 challenging programs

64

65

66

Without seeds

67

Time spent constraint solving by vanilla KLEE

68

69

70

