Summaries of C String Loops for More Effective
Symbolic Execution (and Refactoring)

Cristian Cadar
Imperial College London

SOFTWARE RELIABILITY
GROUP

Joint work with
Timotej Kapus (Imperial College London)
Oren Ish-Shalom and Noam Rinetzky (Tel Aviv University)
Shachar Itzhaky (Technion)

Shonan Meeting on Fuzzing and Symbolic Execution
24-27 September 2019

Motivation

e Strings everywhere!
e Lots of work on building string constraint solvers from the SMT

community
® E.g.,Z3, CVC4, HAMPI

e Let's use them for symbolic execution!

Problem

e Developers often use custom loops instead of string functions

#define whitespace(c) (((c) == '_") || ((c) == "\t"))
char *p; while (*s != '\n’)
for (p = line; p && *p && whitespace (*p); p++) S++;
while (('_"' == *pbeg) [| ('\r' == *pbeg)
|| (*\n' == *pbeg) [| ("\t' == *pbeg))
char *p = path + strlen (path); pbeg++;

for (; *p != '/' && p != path; p--)

J

Objective

e Replace custom loops with sequence of primitive pointer operations and calls
to standard string functions

#define whitespace(c) (((c) == '_") || ((c) == "\t"))
char *p = line + strspn(line, "_\t") s = rawmemchr(s, \n');

pbeg += strspn(pbeg, " _\r\n\t");

p = strrchr(path, '/’);
p = p == NULL ? path : p;

How?

e Counterexample-guided inductive synthesis (based on symex)
e Proof of bounded equivalence (up to a certain string length)
e Mathematical proof of unbounded equivalence

Scope: Memoryless Loops

e Loops conforming to an interface:
o Argument: single pointer to a string
o Returns: pointer to an offset in the string
e Only reads the character under current pointer

char* loopSummary(char*);

Vocabulary for summarizing string loops

string.h functions

strspn
strcspn
memchr
strchr
strrchr
strpbrk

pointer manipulation

® increment
e sSet to start
e set to end

special

e backward traverse
® return

conditionals

e is null
e is start

char *p;

for (p = line; p && *p && whitespace (*p); p++)

J

U

char *p = line + strspn(line,

A\t

STRSPN_OPCODE

_\t

DATA TERMINATOR

RETURN_OPCODE

\

|

Loop summary!

Counter-example guided synthesis

Generate a sequence of tokens

Loop to fitting all counterexamples
summarize

Success

Fail - generate counterexample

Synthesizer

Symbolic execution

Symbolic input: sequence of tokens
Constrain it to be equivalent on
current (counter)examples

Ask an SMT solver for a solution

Verifier

e Symbolic execution
o0 Bounded equivalence checking
strings of length < 3
e For memoryless loops:
o checking lengths < 3 sufficient to
show equivalence for any length
(proof in the paper)
o Intuitively the proof depends on
the fact that each iteration is
independent from previous ones

10

Synthesis Evaluation

e 13 open source programs

e Extracted 115 memoryless
loops

e 88/115 successfully
synthesized within 2h*

e 81 within 5 minutes

*Gaussian process optimization to
optimize the vocabulary

Impact of string solvers (KLEE+Z3str) on Sym EXx

Average across loops, 2min timeout

= vanilla.KLEE == str.KLEE

150

100

Can reason
about unbounded

0 / string lengths

6 8 10 12 14 16 18 20 22

Mean time (s)

Symbolic string length

12

Refactoring

e Used summaries to create patches and send them to developers
e Submitted patches to 5 applications
e Patches accepted in 1ibosip, patch and wget

- for(; *tmp == " ' || *tmp == '"\t'; tmp++) {
-}

- for(; *tmp == '\n' || *tmp == '\r'; tmp++) {
-) /* skip LWS */

+ tmp += strspn(tmp, " \t"):
+ tmp += strspn(tmp, "\n\r");

Conclusion

C developers often use custom loops to operate on strings
Developed synthesis technique to transform such loops into
sequences of primitive operations and calls to standard string library

Potential to significantly speed up symbolic execution of string-
intensive code

Applications to refactoring and compiler optimisations

14

