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Dynamic Symbolic Execution

• Dynamic symbolic execution is a technique for 

automatically exploring paths through a program

• Determines the feasibility of each explored path using a 

constraint solver

• Checks if there are any values that can cause an error on 

each explored path

• For each path, can generate a concrete input triggering 

the path
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Dynamic Symbolic Execution

3

• Received significant interest in the last few years

• Many dynamic symbolic execution/concolic tools 

available as open-source:

– CREST, KLEE, SYMBOLIC JPF, etc.

• Started to be adopted/tried out in the industry:

– Microsoft (SAGE, PEX)

– NASA (SYMBOLIC JPF, KLEE)

– Fujitsu (SYMBOLIC JPF, KLEE/KLOVER)

– IBM (APOLLO)

– etc.



magic ≠ 

0xEEEE

magic =

0xEEEE

img = 

Toy Example

TRUE

int main(int argc, char** argv) {

...

image_t img = read_img(file);

if (img.magic != 0xEEEE)

return -1;

if (img.h > 1024)

return -1;

w = img.sz / img.h;

...

}

magic ≠ 

0xEEEE

return -1

h > 1024
TRUE

h > 1024
return -1

h ≤ 1024

w = sz / h

struct image_t {

unsigned short magic;

unsigned short h, sz;

...
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magic ≠ 

0xEEEE

magic =

0xEEEE

img = 

AAAA0000…

img1.out

TRUE
return -1

h > 1024
TRUE

h > 1024
return -1

h ≤ 1024

EEEE1111…

img2.out

h = 0
TRUE

h = 0

Div by 
zero!

h ≠ 0

EEEE0A00… img4.out

EEEE0000…

img3.out

w = sz / h

magic ≠ 

0xEEEE

int main(int argc, char** argv) {

...

image_t img = read_img(file);

if (img.magic != 0xEEEE)

return -1;

if (img.h > 1024)

return -1;

w = img.sz / img.h;

...

}

struct image_t {

unsigned short magic;

unsigned short h, sz;

...

Toy Example
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Implicit checks before each 
dangerous operation

• Pointer dereferences

• Array indexing

• Division/modulo operations

• Assert statements

All-Value Checks

0 ≤ k< 4
TRUE FALSE

int foo(unsigned k) {
int a[4] = {3, 1, 0, 4};
k = k % 4;
return a[a[k]];

}

. . . 

{ k = * }

. . . 

All-value checks!

• Errors are found if any buggy 

values exist on that path!

TRUE FALSE

Infeasible

. . . 

0 ≤ k < 4 ¬ 0 ≤ k < 4
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Implicit checks before each 
dangerous operation

• Pointer dereferences

• Array indexing

• Division/modulo operations

• Assert statements

All-Value Checks

0 ≤ a[k]< 4
TRUE FALSE

int foo(unsigned k) {
int a[4] = {3, 1, 0, 4};
k = k % 4;
return a[a[k]];

}

. . . 

Buffer overflow!

{ k = * }

. . . 

All-value checks!

• Errors are found if any buggy 

values exist on that path!

FALSETRUE

¬ 0 ≤  a[k] < 40 ≤  a[k] < 4

. . . k = 3



All operations that do not depend on the symbolic 

inputs are (essentially) executed as in the original code

Advantages:

– Ability to interact with the outside environment

• E.g., system calls, uninstrumented libraries

– Can partly deal with limitations of constraint solvers

• E.g., unsupported theories

– Only relevant code executed symbolically

• Without the need to extract it explicitly

Mixed Concrete/Symbolic Execution
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KLEE

• Symbolic execution tool started as a successor to EXE

• Based on the LLVM compiler, primarily targeting C code

• Open-sourced in June 2009, now available on GitHub

• Active user base with over 300 subscribers on the mailing list 

and over 35 contributors listed on GitHub

Webpage: klee.github.io

Code: https://github.com/klee
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KLEE

• Extensible platform, used and extended by many groups in 

academia and industry, in the areas such as:

• bug finding

• high-coverage test input generation

• exploit generation

• automated debugging

• wireless sensor networks/distributed systems

• schedule memoization in multithreaded code

• client-behavior verification in online gaming

• GPU testing and verification, etc.

An incomplete list of publications and extensions available at:

klee.github.io/Publications.html 10
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Bug Finding with KLEE (incl. EGT/EXE): 
Focus on Systems and Security Critical Code

Applications

UNIX utilities

ext2, ext3, JFSUNIX file systems

Coreutils, Busybox, Minix (over 450 apps)

Network servers

pci, lance, sb16

Library code libdwarf, libelf, PCRE, uClibc, etc.

Packet filters FreeBSD BPF, Linux BPF

MINIX device drivers

Bonjour, Avahi, udhcpd, lighttpd, etc.

Kernel code HiStar kernel

• Most bugs fixed promptly

OpenCV (filter, remap, resize, etc.)Computer vision code

OpenCL code Parboil, Bullet, OP2
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md5sum -c t1.txt

mkdir -Z a b

mkfifo -Z a b

mknod -Z a b p

seq -f %0 1

printf %d ‘

pr -e t2.txt

tac -r t3.txt t3.txt

paste -d\\ abcdefghijklmnopqrstuvwxyz

ptx -F\\ abcdefghijklmnopqrstuvwxyz

ptx x t4.txt

cut –c3-5,8000000- --output-d: file

Coreutils Commands of Death

t1.txt:    \t \tMD5(

t2.txt:    \b\b\b\b\b\b\b\t

t3.txt:    \n

t4.txt:    A

[Cadar, Dunbar, Engler OSDI 2008]

[Marinescu, Cadar ICSE 2012]



Packet of Death (Bonjour)

Offset Hex Values

0000 0000 0000 0000 0000 0000 0000 0000 0000

0010

0020 00FB 0000 14E9 002A 0000 0000 0000 0001

0030 0000 0000 0000 055F 6461 6170 045F 7463

0040 7005 6C6F 6361 6C00 000C 0001

003E 0000 4000 FF11 1BB2 7F00 0001 E000

• Causes Bonjour to abort, potential DoS attack

• Confirmed by Apple, security update released

[Song, Cadar, Pietzuch IEEE TSE 2014]



KLEE Architecture

LLVM 
bitcode

Core EngineENVIRONMENT
MODELS

Constraint Solver

x = 3

C code

x  0
x  1234

L
L
V
M

AAAA0000…

EEEE1111…

EEEE0000…

EEEE0A00…

BUG
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KLEE Demo: Toy Image Viewer

// #include directives

struct image_t {

unsigned short magic;

unsigned short h, sz; // height, size

char pixels[1018]; 

};

int main(int argc, char** argv) {

struct image_t img;

int fd = open(argv[1], O_RDONLY);

read(fd, &img, 1024);

if (img.magic != 0xEEEE)

return -1;

if (img.h > 1024)

return -1;

unsigned short w = img.sz / img.h;

return w;

}

17

$ clang –emit-llvm -c -g image_viewer.c

$ klee --posix-runtime –write-pcs 

image_viewer.bc --sym-files 1 1024 A

...

KLEE: output directory = klee-out-1 

(klee-last)

...

KLEE: ERROR: ... divide by zero

...

KLEE: done: generated tests = 4



KLEE Demo: Toy Image Viewer
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$ cat klee-last/test000003.pc

...

array A-data[1024] : w32 -> w8 = symbolic

(query [

...

(Eq 61166 

(ReadLSB w16 0 A-data))

(Eq 0 

(ReadLSB w16 2 A-data))

...

)



KLEE Demo: Toy Image Viewer
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$ klee-replay --create-files-only klee-last/test000003.ktest 

[File A created]

$ xxd -g 1 -l 10 A

0000000: ee ee 00 00 00 00 00 00 00 00                 ..........

$ gcc -o image_viewer image_viewer.c

[image_viewer created]

$ ./image_viewer A

Floating point exception



KLEE Demo: All-Values Checks

int foo(unsigned k) {

int a[4] = {3, 1, 0, 4};

k = k % 4;

return a[a[k]];

}

int main() {

int k;

klee_make_symbolic(&k, sizeof(k), "k");

return foo(k);

}
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$ clang –emit-llvm -c -g all-values.c

$ klee all-values.bc

...

KLEE: ERROR: /home/klee/all-values/all-

values.c:4: memory error: out of bound 

pointer

...

KLEE: done: completed paths = 2

KLEE: done: generated tests = 2



Running KLEE inside a 

Docker container

21

Step 1: Install Docker for Linux/MacOS/Windows

Step 2: docker pull klee/klee

Step 3: docker run --rm -ti --ulimit='stack=-1:-1' klee/klee

http://klee.github.io/docker/



KLEE on the Web

22

You can try KLEE on the web now (world premiere!) at:

http://klee.doc.ic.ac.uk

(work in progress)



KLEE Architecture

LLVM 
bitcode

Core EngineENVIRONMENT
MODELS

Constraint Solver

x = 3

C code

x  0
x  1234

L
L
V
M

AAAA0000…

EEEE1111…

EEEE0000…

EEEE0A00…

BUG
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KLEE Architecture:
L
L
V
M

LLVM advantages:

• Mature framework, incorporated into commercial 

products by Apple, Google, Intel, etc.

• Elegant design patterns: analysis passes, visitors, etc.

• Single Static-Assignment (SSA) form with infinite 

registers (nice fit for symbolic execution)

• Lots of useful program analyses

• Well documented

• Several different front-ends, so KLEE could be 

extended to work with languages other than C
24



KLEE Architecture:
L
L
V
M

LLVM disadvantages

• Fast changing, not-backward compatible API!

• KLEE is currently based on LLVM 3.4

• Compiling to LLVM bitcode is still not trivial, but it’s 

getting better:

• make CC=“clang –emit-llvm”

• LLVM Gold Plugin http://llvm.org/docs/GoldPlugin.html

• Whole-Program LLVM https://github.com/travitch/whole-program-llvm
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KLEE Architecture:
L
L
V
M

KLEE runs LLVM, not C code!

#include <stdio.h>

int main() {

int x;

klee_make_symbolic(&x, sizeof(x), "x");

if (x > 0)

printf("x\n");

else printf("x\n");

return 0;

}

$ clang –emit-llvm -c -g code.c

$ klee code.bc

...

x

KLEE: done: total instructions = 6

KLEE: done: completed paths = 1

KLEE: done: generated tests = 1
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KLEE Architecture: Core Engine

Core Engine

Interpreter

Searchers

StatsMemory

……

……

The core engine implements symbolic execution exploration.
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KLEE Architecture:

• Works as a mixed concrete/symbolic interpreter for LLVM bitcode

Instruction *i = ki->inst;

switch (i->getOpcode()) {

case Instruction::Ret:

…

case Instruction::Br: 

// if both sides feasible, fork 

…

Core Engine

Interpreter

$ ./program $ klee program.bc

28



Paths and Execution States

Tree of ESs

• Fork implemented by 

object-level COW

• Each path represented by an ExecutionState, with KLEE acting as 

an OS for ExecutionStates

• PC

• Stack

• Address space

• List of sym objects

• Path constraints

• etc.

ExecutionState

29



KLEE Architecture:

The core engine implements symbolic execution exploration.

Two main scalability challenges:

Core Engine

Constraint solving 
challenges

Path exploration 
challenges

30



Path Exploration Challenges

Naïve exploration can easily get “stuck”

• Employing search heuristics

• Dynamically eliminating redundant paths

• Statically merging paths

• Using existing regression test suites to 

prioritize execution

• etc.
31



Search Heuristics in KLEE

• Basic search heuristics such as BFS and DFS

klee --search=bfs program.bc

• Coverage-optimized search (--search=nurs:md2u)

– Select path closest to an uncovered instruction

• Random-state search (--search=random-state)

– Randomly select a pending state/path

• Random-path search (--search=random-path)

– Described next

• etc.

32

[Cadar, Ganesh, Pawlowski, Dill, Engler CCS’06]

[Cadar, Dunbar, Engler OSDI’08]

[Marinescu, Cadar ICSE’12], etc.

Core Engine

Searchers



Random Path Selection

• NOT random state selection

• NOT BFS

• Favors paths high in the tree

– fewer constraints

• Avoid starvation

– e.g. symbolic loop

0 .5

0 .2 5

0 .1 2 50 .0 6 2 50 .0 6 2 5

• Maintain a binary tree of 

active paths

• Subtrees have equal prob. of 

being selected, irresp. of size

33

Core Engine

Searchers



Combining Search Heuristics

KLEE can also use multiple heuristics in a round-
robin fashion, to protect against individual 

heuristics getting stuck in a local maximum.

34

klee --search=nurs:md2u -–search=dfs

–-search=random-path ...

Core Engine

Searchers



New Search Heuristics

selectState()  ExecutionState

update(addedStates, removedStates)

Easy to plug a new searcher by  

extending the Searcher class:

Core Engine

Searchers

Tree of ESs

CFG

• Solver time

• Instructions executed

• Memory consumption

• etc.

Statistics
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Memory Modelling

Accuracy: need bit-level modeling of memory:

• Systems code often observes the same bytes in different 

ways: e.g., using pointer casting to treat an array of chars 

as a network packet, inode, etc.

• Bugs (in systems code) are often triggered by corner 

cases related to pointer/integer casting and arithmetic 

overflows

36

Core Engine

Memory



• One data type: arrays of bitvectors (BVs) 

• Mirror the (lack of) type system in C

– Model each memory block as an array of 8-bit BVs

– Bind types to expressions, not bits

• We can translate all C expressions into constraints in 
the theory of quantifier-free BV with arrays (QF_ABV) 

with bit-level accuracy

– Main exception: floating-point

37

Memory Modelling
Core Engine

Memory



Accuracy: Example

char buf[N]; // symbolic

struct pkt1 { char x, y, v, w; int z; } *pa = (struct pkt1*) buf;

struct pkt2 { unsigned i, j; } *pb = (struct pkt2*) buf;

if (pa[2].v < 0) { assert(pb[2].i >= 1<<23); } 

buf: ARRAY BITVECTOR(32)OF BITVECTOR(8)

buf[18] <SIGNED 0x00 

buf[19]@buf[18]@buf[17]@buf[16] ≥ UNSIGNED 0x00800000

38



KLEE Architecture

LLVM 
bitcode

Core EngineENVIRONMENT
MODELS

Constraint Solver

x = 3

C code

x  0
x  1234

L
L
V
M

AAAA0000…

EEEE1111…

EEEE0000…

EEEE0A00…

BUG
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SMT Solvers 
(--solver-backend=stp, z3, …)

40

metaSMT

STPBoolector Z3

STP

Theory of closed 
quantifier-free 

formulas over 
bitvectors and 

arrays of 
bitvectors

(QF_ABV)

Z3

• STP: Developed at Stanford.  Initially targeted to, and driven by, 
EXE.  Main solver in KLEE.

• Z3: Developed at Microsoft Research, integrated both natively and 
as part of metaSMT.

• Boolector: Developed at Johannes Kepler University, integrated via 

metaSMT.



metaSMT

• metaSMT developed at University of Bremen provides a unified 
API for transparently using a number of SMT (and SAT) solvers

– Avoids communication via text files, which would be too expensive

– Small overhead: compile-time translation via metaprogramming

metaSMT

STPBoolector Z3

STP Z3

41



LoggingSolver

KLEE Architecture: Constraint Solver

SMT Solver

• Several high-level optimizations 

specific to symex

– CEX caching, elimination of 

irrelevant constraints, etc.

• Implemented as a stack of solver 

passes

• Caching  only some queries 

reach the solver

• Independent Kleaver tool that 
implements this solver stack

CEX Cache

Branch Cache

Constraint Independence

Query

S
o
lv

e
r 

S
ta

c
k

LoggingSolver



Constraint Solving: Performance

• Inherently expensive 

• Invoked at every branch

• Key insight: exploit the characteristics of 

constraints generated by symex

43



Some Constraint Solving Statistics 
[after optimizations]

UNIX utilities (and many 

other benchmarks)

• Large number of queries

• Most queries <0.1s

• Most time spent in the 

solver (before and after 

optimizations!)

Application Instrs/s Queries/s Solver %

[ 695 7.9 97.8

base64 20,520 42.2 97.0

chmod 5,360 12.6 97.2

comm 222,113 305.0 88.4

csplit 19,132 63.5 98.3

dircolors 1,019,795 4,251.7 98.6

echo 52 4.5 98.8

env 13,246 26.3 97.2

factor 12,119 22.6 99.7

join 1,033,022 3,401.2 98.1

ln 2,986 24.5 97.0

mkdir 3,895 7.2 96.6

Avg: 196,078 675.5 97.1

1h runs using KLEE with 
DFS and no caching

[Palikareva and Cadar CAV’13]



Higher-Level Constraint 

Solving Optimizations

• Two simple and effective optimizations

– Eliminating irrelevant constraints

– Caching solutions

46



Eliminating Irrelevant Constraints
(--use-independent-solver=true/false)

• In practice, each branch usually depends on a small number 
of variables

w+z > 100

2 * w – 1 < 12345

x + y > 10

z & -z = z

x < 10 ?

…

…

if (x < 10) {

…

}                   

47
[CCS’06]



Caching Solutions
(--use-cex-cache=true/false)

2  y < 100

x > 3

x + y > 10

x = 5

y = 15

2  y < 100

x + y > 10

2  y < 100

x > 3

x + y > 10

x < 10

• Static set of branches: lots of similar constraint sets

Eliminating constraints
cannot invalidate solution

Adding constraints often 
does not invalidate solution

x = 5

y = 15

x = 5

y = 15

48
[OSDI’08]
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KLEE Architecture

LLVM 
bitcode

Core EngineENVIRONMENT
MODELS

Constraint Solver

x = 3

C code

x  0
x  1234

L
L
V
M

AAAA0000…

EEEE1111…

EEEE0000…

EEEE0A00…

BUG
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KLEE Architecture: Environment Models

• Environment model: model for a piece of code 

for which source is not available

• In KLEE, the environment is mainly the OS 

system call API

51



Environmental Modeling

// actual implementation: ~50 LOC

ssize_t read(int fd, void *buf, size_t count) {

klee_file_t *f = get_file(fd);

…

memcpy(buf, f->contents + f->off, count)

f->off += count;

…

• Users can extend/replace environment w/o any knowledge of 
KLEE’s internals

• Often the first part of KLEE users experiment with

• Users can choose precision

• fail system calls? etc.

• Currently: effective support for symbolic command line 

arguments, files, links, pipes, ttys, environment vars

Models are plain C code, 
which KLEE interprets as 

any other code!
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Statistics

Good support for producing and visualizing a variety of 

statistics, associated with different entities and events

Core Engine Stats



Non-determinism in SymEx and KLEE

• Any good experiment needs to take non-
determinism into account

• Sources of non-determinism include 
constraint solving, search heuristics, LLVM 

versions, memory allocation

– Currently fixing implementation-level non-

determinism, such as hash tables indexed by 
memory addresses, which can differ across runs
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Example: Constraint solving 

optimization in KLEE

Approach: run baseline KLEE for 30’, rerun in 

the same configuration with optimizations

Baseline

Q1 = 20’’ 

Q2 = 3’’Q3 = 20’’ 

Q4 = TO

Q5 = 3’’ 

Q6 = 2’’ 

Optimized

Q1 = 7’’ 

Q2 = 5’’Q3 = 7’’ 

Q4 = 25’’

QA= 1’’ 

QB =1’’ 

30 minutes 10 minutes
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Example 2: Coverage optimization 

in KLEE

Approach: take same benchmarks from paper X, 

rerun KLEE with coverage optimization

Baseline (LLVM 2.3)

60% coverage

Baseline (LLVM 3.4)

80% coverage

Optimized (LLVM 3.4)

80% coverage

56



• Program analysis technique that can be use to 

automatically explore paths through a program

• Can generate inputs achieving high-coverage and 

exposing bugs in complex software

Dynamic Symbolic Execution 
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KLEE: Freely Available as Open-Source

http://klee.github.io/

• Popular symbolic execution tool with an active user 

and developer base

• Extended in many interesting ways by several 

groups from academia and industry, in areas such as:

• exploit generation

• wireless sensor networks/distributed systems

• automated debugging

• client-behavior verification in online gaming

• GPU testing and verification

• etc. etc.
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