Dynamic Symbolic Execution
for Evolving Software

Cristian Cadar

((@» SOFTWARE RELIABILITY Imperial College
GROUP London

Engineering and . . .
Ph)g(sical chiences University of Edinburgh

Research Council 10 March 2023

Research
sponsored by

égg'lagARE RELIABILITY http://srg.doc.ic.ac.uk

Currentand recent members

Anastasios Franmk Manuel Karine Martin
Andronidis Busse Carrasco Even- Nowack
Mendoza

Criskian
Cadar

:‘)ordj Daniel Arindam Bachir Ahmed
Rulz Schemmel Sharma Bendrissou Zalkl

SOFTWARE RELIABILITY Program analysis techniques f |
GROUP for improving the reliability .
and security of software systems {of

| am hiring! Let me know if you are

Current and recent projects interested in a PhD or postdoc in the group!
* Program analysis for evolving « Automatic generation of test * Multi-variant execution for
software drivers improving reliability & security
 Understanding, detecting and * Fuzzing of network protocol * Code refactoring
preventing compiler bugs implementation * Confirming static analysis
« Automatic improvement of program * Selective binary rewriting for reports
test suites fuzzing and debugging * Constraint solving and
sampling

--- klee/trunk/lib/Core/Executor.cpp 2009/08/01 22:31:44 77819
+++ klee/trunk/lib/Core/Executor.cpp 2009/08/02 23:09:31 77922
@@ -2422,8 +2424,11 @@

00001000 g\
0()10 01100011 ooop
0010 10000111 ooun

0001 00100101 1111
usnomoomollllomm
o \\0\01110101 mow

%011 01000111 000! ,,;

YES!

Test cases are valuable as:

Do Developers
_ike Tests?

ens

en

Re

gi

Line Coverage in Several Popular
Open-Source Applications

Do Developers
_ike Tests?

Writing

Joint work with Marinescu and Hosek

Fully-Covered Patches in Several Popular
Open-Source Applications

12y development time across apps

Do Developers
_ike Tests?

Writing

Between = 5% and 50% of
patches are not covered AT ALL

Joint work with Marinescu and Hosek

Automatic Patch Testing

Objective: Generate tests that exercise the patch code, FAST

Approach: Explore program paths using dynamic symbolic execution

X = %

if (x > 5) TRUE /‘5\ FALSE

X >
printf(”>5”); \/ <t

x>5

if (x > 2)
printf (“>2");

TRUE TRUE FALSE

X>2 x<2

Real programs: huge number S—
of paths, huge formulas X=6 X=4 x=1

/, Webpage: https://klee.github.io/
Code: https://github.com/klee/

Popular symbolic executor primarly developed and maintained at Imperial

Active user and developer base:
* 100+ contributors KLEE and subprojects, 500+ forks, 2000+ stars, 400+ mailing list subscribers

Academic impact:
 ACM SIGOPS Hall of Fame Award and ACM CCS Test of Time Award

* 3.5K+ citations to original KLEE paper (OSDI 2008)

* From many different research communities: testing, verification, systems, software
engineering, programming languages, security, etc.

Growing impact in industry:
e Baidu, Bloomberg, Fujitsu, Google, Huawei, Qualcomm, Samsung, Trail of Bits as sponsors
of KLEE workshops
* Baidu: [KLEE-W 2018]|, Fu%itsu: [PPoPP 2012], [CAV 2013], [ICST 2015], [IEEE Software 2017],
[KLEE-W 2018], Google: [2x KLEE-W 2021], Hitachi: [CPSNA 2014], [ISPA 2015], [EUC 2016],
[KLEE-W 2021], Intel: FWOOT 2015], NASA Ames: [NFM 2014], Samsung: [2x KLEE-W 2018],
Trail of Bits [https://blog.trailofbits.com/], etc.

400+ participants to KLEE Workshops, with good mix of academia and industry

From Whole-Program Analysis
...To More Localized Tasks

* Most work on modern symbolic
execution on whole-program analysis
(test generation, bug finding, etc.)

 How does it compare to patch-targeted
analysis?

* Which one is easier?

Opportunities for patch testing:

1) Reuse the results of the analysis (see
MOKLEE [Busse et al, ISSTA’21])

2) Prune the (large) part of the search
space unrelated to the patch

Prune Search Space Unrelated to Patch

* Many code fragments are unrelated
to the patch
* But symbolic execution can spend lots
of time unnecessarily analyzing them

* Determining precisely if a part of
the code is unrelated is hard

e Often, most computation in a code
fragment is unrelated, but not all

main

target

12

Chopped Symbolic Execution

IDEA:
1) Guess unrelated code fragments (manually or via lightweight analysis)

2) Speculatively skip these code fragments
3) If their side effects are ever needed, execute relevant skipped paths only

Joint work with Trabish, Mattavelli, Rinetzky

Chopped Symbolic Execution

int j; // symbolic
int k; // symbolic
int x = 0;
int y = 0;

Joint work with Trabish, Mattavelli, Rinetzky

void main() {

();

Note that in general, we
need to use a pointer alias
analysis to compute the
ref/mod sets.

CF (5> 0P
GE

targetl;

}
target2;

}
Ref(main) = {j, y}

—> void f() {

k > 0)
b

(3 > 0)

14

Dependent Loads

int j; // symbolic
int k; // symbolic
int x = 0;
int y = 0;

void main() {

()
S —> void f() {
L@ e e i (k> 0)
“IIII!I"‘::\ x =15
tar et1°\:\‘ e
2 4 \\\\\\\ if (J > 0)
)
else target2; S
} } Yo

Dependent load

15

Chopped Symbolic Execution

j:k=*

—

void main() {

0);
(J >0) {
(y)
targetl;

}

target2;

16

Taking Snapshots

j1k=*

void main() {

—>
if (7 > 9) {
if (y)
targetl;

}

else target2;

17

Taking Snapshots

j1k=*

[
\ 4

Program counter: line 2
Stack = [main]

Path constraints: {}
Memory: {x=0,y=0, k=...}

(¥

2N

)

void main() {

—

}

——
if (j > 0) {
it (y)
targetl;
}
else target2;

18

Reaching Target — Ideal Case

j: = *

—>

void main() {

——
if (j > 0) {
it (y)
targetl;
}

else target2;

}

19

Reaching Target — Ideal Case

j: = *

—>

void main() {

——
if (j > 0) {
it (y)
targetl;
}

else target2;

}

20

Reaching Target — Recovery Needed

j: = *

void main() {

———
if (j > 0) {
> oD
<o AE D
X targetl;
// }
/
dependent load / else target2;

}

21

Recovery Process

create recovery state)O void main() {
hrialogibdiaiid uie -
| 05—

—> if (3 > 0) {

<o |

// targetl;
/

e }
else target2;
}

dependent load

Recovery Process

j1k=*

—> | void f() {
it (k > 9)
X = 1;
else
it (3 > 9)
y = 1;
else
y = 0;

Static Slicing

j1k=*

= _;.‘

removed by _ -~
static slicing

e

”

’

e

—> | void f() {
it (k > 9)
s7 // x = 1;
P d
R else
it (j > 0)
y = 1;
else
y = 9;

24

Recovery Process

j1k=*

—> | void f() {
it (k > 9)
// x = 1;
else
it (j > 0)
y = 1;
else
y = 9;

Recovery Process

j1k=*

k>0

—

void f() {
it (k > 9)
// x = 1;
else
it (j > 0)
y = 1;
else
y = 9;

26

Recovery Process

j1k=*

k>0

—

void f() {
it (k > 9)
// x = 1;
else
it (j > 0)
y = 1;
else
y = 9;

27

Recovery Process

j1k=*

—

void f() {
it (k > 9)
// x = 1;
else
it (j > 0)
y = 1;
else
y = 9;

28

Recovery Process

J,k

*

void f() {
it (k > 9)
// x = 1;
else
it (j > 0)
y = 1;
else
y = 9;

29

Recovery Process

j1k=*

k>0

—

void f() {
it (k > 9)
// x = 1;
else
it (j > 0)
y = 1;
else
y = 9;

30

Recovery Process

j1k=*

k>0

void f() {
it (k > 9)
// x = 1;
else
it (j > 0)
y = 1;
else
y = 9;

31

Recovery Process

J,k

*

k>0

void f() {
it (k > 9)
// x = 1;
else
it (j > 0)
y = 1;
else
y = 9;

32

Recovery Process

j:k =

*

k>0

void main() {

();
if (7 > 9) {
if (y)
targetl;
}
else target2;

}

33

address = optimizer.optimizeExpr(address, true);
StatePair zeroPointer = fork(state, Expr::createIsZero(address), true);

L] L] L]
Preliminary Experience: 17 rerapainter-irst)
. if (target)
bindLocal(target, *zeroPointer.first, Expr::createPointer(0));

Reproducing Security Vulnerabilities Le Grerootnter.secondy (17 adares 1+ o

ExactResolutionList rl;
resolveExact(*zeroPointer.second, address, rl, "free");

for (Executor::ExactResolutionList::iterator it = rl.begin(),
ie = rl.end(); it != ie; ++it) {
o const MemoryObject *mo = it->first.first;
Benchmark: GNU libtasnl iF (ro->istocal) {
terminateStateOnError(*it->second, "free of alloca", F
getAddressInfo(*it->second, ad

* ASN.1 protocol used in many networking and } else if (no-»isalobal) {

terminateStateOnError(*it->second, "free of glob

cryptographic applications, such as for public key getaddressInfo(*it->secy

} else {

ce rtlflcates and e_mall i;-z:::gg:;mddressSpace.unbindObject(mo)'
o . afe, . . bindLocal(target, *it->second, Ex
* Considered 4 CVE security vulnerabilities, with a . e /
total of 6 vulnerable locations (out-of-bounds)
aCCESSES) void Executor::resolveExact(Exe

p = optimizer.optimizeExpr(p, tr

// XXX we may want to be capping

 Starting from the CVE report, generate inputs that resoliontist 1 :
. . state.addressSpace.resolve(state, so
trigger OOB accesses at the vulnerable locations i

> rl);

ExecutionState *unbound = &state;
for (ResolutionList::iterator it = rl.begin(), ie = rl.end();

M et h O d O | Ogy: refi-:x;;i:r;m;:i;i i EqExpr::create(p, it->first->getBaseExpr());
 Manually identified the irrelevant functions to skip StatePair branches = fork(*unbound, inBounds, true);

. . o . o if (branches.first)
o Tlme ||m|t 24 hours) memory ||m|t 4 GB results.push_back(std: :make_pair(*it, branches.first));

unbound = branches.second;
if (lunbound) // Fork failure

break;

34

Reproducing Security Vulnerabilities

160 TIMEOUT (24h) TIMEOUT (24h) OUT OF MEMORY

| KLEE m Chopper
140
[random path search]
120
100
80
60
40
20

CVE-2014-3467 (1) CVE-2014-3467 (2) CVE-2015-2806 CVE-2014-3467 (3) CVE-2015-3622 CVE-2012-1569

L SN Over 43k recoveries!

No recoveries!

Minutes

35

Challenges of Chopped Symbolic Execution

Code to skip [ongoing work with Nowack, Ruiz, Zaki]

* |dea: skip all function calls not on the shortest path to the patch
* Can always make different guesses and try them in parallel

* |ldea: dynamically adjust list of skipped functions
* E.g., remove those that trigger many recoveries

Precision of pointer analysis

* Initially a single pointer analysis, in the beginning, where we compute all
mod/ref sets

* Run pointer analysis on demand, just before skipping a function

Past-Sensitive Pointer Analysis (PSPA)

* Run pointer analysis on-demand, not
ahead of time:
* From a specific symbolic state

* Distinguish between past and future:
* Objects that were already allocated
» Allocated objects are associated
with unique allocation sites
* Objects that might be allocated
during pointer analysis

Joint work with Trabish, Kapus, Rinetzky

typedef struct { int d, *p; } obj_t;
void foo(obj t *o) {
if (o->p)
o->d = 7;

obj_t* objs[N];
for (int i = 0; 1 < N; i++)

objs[i] = calloc(...);

objs[0]->p = malloc(...);
foo(objs[1]);
if (objs[0]->d)

Are All Inputs the Same?

Consider the patch:

Old New
if (x 8 2 == 0) if (x $ 3 == 0)
No further uses of x No further uses of x

? ? ? ?

38

Are All Inputs the Same?

Consider the patch:

New

(X %

Full branch coverage in the new version

39

Are All Inputs the Same?

Consider the patch:

However, totally useless for testing the patch!

40

Are All Inputs the Same?

Consider the patch:

Old

No further uses of x

if (x 8 2 == 0) —) if

old = then
new =2 else

old = else
new -2 then

41

Shadow Symbolic Execution
Symbolic Execution on Both Versions Concurrently

Oold New

TRUE FALSE

(x%2=0)A(x%3=20) (x%220)A(x%3=0)

Joint work with Kuchta and Palikareva

Shadow Symbolic Execution

Automatically generate inputs that trigger
different behaviors in the two versions

Run the two versions together, in the same symbolic execution instance:

Can prune large parts of the search space, for which the two versions behave identically
Provides the ability to reason about specific values leading to simpler path constraints
Is memory-efficient by sharing large parts of the symbolic constraints

Does not execute unchanged computations twice

43

Case Study: cut

(file is “a:b:c")

Input Old New

cut -c1-3,8- -output-d=: file abc abc + buffer overflow
(file is "abcdefg")

cut -c1-7,8- --output-d=: file abcdef abcdef + buffer

file contains “abcdefg” overflow

cut -b0-2,2- --output-d=: file abc signal abort

file contains “abc”

cut -s -d: -fO- file \nil \n\n

(file is “:::\n:1")

cut -d: -f1,0- file a:b:c a

Test Cases as Documentation!

Beyond Generic Errors

* Symbolic execution can precisely reason about arbitrary properties
* Paths are modeled as a mathematical constraints

* But specifications are notoriously hard to write
* Often significantly bigger than the code itself and complicated to write

 What about patch specs?

Patch Specifications

 Specifications, potentially incomplete, encoding cross-patch properties

assert (out == out prev + 1)

* We need a way to make the state of both versions available to the analyser

Product Programs

Used to reason about hyperproperties in a security context

e Particularly non-interference
e Product program of program P with itself

1) Can product programs work for multiple versions of a program?
2) Can they be constructed automatically for large programs?
3) Can they facilitate the writing of patch specifications?

Joint work with Sharma and Schemmel

48

Toy Example

Fn=...8, 13,21, 34, ..

int Fn;
n

if (n <= 1) Fn=/],/

Fn=Fn_1+Fn_2;

for (inti=2;i<n;i++)
Fn_ 2=Fn_1; Fn_1=Fn;
Fn=Fn_1+Fn_2;

assert (Fn = Fn 1 prev);

}

0 |0 |12 3] 4

prev 1 1 2 3 5
O‘\'1 ‘\ 1‘\'2 ‘\ 3

curr

int Fn prev,
if (n <= 1)
else {
int Fn 2 p
int Fn 1 p

Fn;
{ Fn prev = 1; Fn = n; }
rev = 1; 1int Fn 2 = 0;

rev = 1; 1int Fn 1 = 1;

Fn prev = Fn 1 prev + Fn 2 prev;

Fn = Fn 1 + Fn 2;

for (int 1 = 2; 1 < n; 1i++) {
Fn 2 prev = Fn 1 prev; Fn 2 = Fn_
Fn 1 prev = Fn prev; Fn 1 = Fn;
Fn prev = Fn 1 prev + Fn 2 prev;
Fn = Fn 1 + Fn 2;

}

assert (Fn

== I'n 1 prev);

1;

49

Is

“Do not hard-code ’/’. Use IS _ABSOLUTE _FILE NAME and dir_len
instead. Use stpcpy/stpncpy in place of strncpy/strcpy.”

Spec violation:

name = /a
if (*linkname =="/")

return xstrdup (linkname);

linkname = x

char const *linkbuf = strrchr (name, '/’);

if (linkbuf == NULL)
return xstrdup (linkname);
size_t bufsiz = linkbuf - name + 1;
char *p = xmalloc (bufsiz + strlen (linkname) + 1);
strncpy (p, name, bufsiz);
strcpy (p + bufsiz, linkname);

return p;

assert((IS_ABSOLUTE_FILE_ NAME (linkname))
== (*linkname_prev =="/"));

if (IS_ABSOLUTE_FILE_NAME (linkname))

return xstrdup (linkname);

size_t prefix_len = dir_len (name);
assert((prefix_len == 0) == (linkbuf_prev == NULL));
if (prefix_len ==0)

return xstrdup (linkname);

char *p = xmalloc (prefix_len + 1 + strlen (linkname) + 1);
stpcpy (stpncpy (p, name, prefix_len + 1), linkname);

assert(strcmp(p, p_prev) ==0);
return p;

“Do not hard-code ’/’. Use IS _ABSOLUTE _FILE NAME and dir_len

Is instead. Use stpcpy/stpncpy in place of strncpy/strcpy.”

assert((IS_ABSOLUTE_FILE_ NAME (linkname))
== (*linkname_prev =="/"));

if (*linkname =="/")

return xstrdup (linkname);

if (IS_ABSOLUTE_FILE_NAME (linkname))

return xstrdup (linkname);

char const *linkbuf = strrchr (name, '/’); size_t prefix_len =dir_len (name);
Spec violation: assert((prefix_len == 0) == (linkbuf prev == NULL));

if (linkbuf == NULL) name = /x//y if (prefix_len == 0)

return xstrdup (linkname); : return xstrdup (linkname);

_ o linkname = a .
size_t bufsiz = linkbuf - name char *p = xmalloc (prefix_len + 1 + strlen (linkname) + 1);
char *p = xmalloc (bufsiz + strlen (linkname) + 1); if (! ISSLASH (name[prefix_len - 1])) ++prefix_len;
strncpy (p, name, bufsiz); stpcpy (stpncpy (p, name, prefix_len), linkname);
strcpy (p + bufsiz, linkname); assert(strcmp(p, p_prev) ==0);

return p; return p;

Is

“Do not hard-code ’/’. Use IS _ABSOLUTE _FILE NAME and dir_len
instead. Use stpcpy/stpncpy in place of strncpy/strcpy.”

if (*linkname =="/")

return xstrdup (linkname);

char const *linkbuf = strrchr (name, '/’);

if (linkbuf == NULL)

return xstrdup (linkname);

Nna

size_t bufsiz = linkbuf - name

Nam

ec violatiopn

x//y

= d

char *p = xmalloc (bufsiz + strlen (linkname) + 1};

strncpy (p, name, bufsiz);
strcpy (p + bufsiz, linkname);

return p;

assert((IS_ABSOLUTE_FILE_ NAME (linkname))
== (*linkname_prev =="/"));

if (IS_ABSOLUTE_FILE_NAME (linkname))

return xstrdup (linkname);

size_t prefix_len =dir_len (name);
assert((prefix_len == 0) == (linkbuf prev == NULL));
if (prefix_len == 0)

return xstrdup (linkname);

char *p = xmalloc (prefix_len + 1 + strlen (linkname) + 1);

if (1 ISSLASH (name[prefix_len - 1])) ++prefix_len;
stpcpy (stpncpy (p, name, prefix_len), linkname);

assert(patheqg(p, p_prev) ==0);
return p;

SOFTWARE RELIABILITY

GROUP

Imperial College

London

Dynamic Symbolic Execution for Evolving Software

Line Coverage in Several Popular
Open-Source Applications

Do Developers

Like Tests? B1%

Ao > & O > N
. (\6\'\ ‘\\‘.\'Q le& 0@ (“(\e ©
W &
< :

Note that in general, we
need to use a pointer alias
analysis to compute the
ref/mod sets.

Chopped Symbolic Execution

int j; // symbolic void main() {
int k; // symbolic £O);
e

int x = @; void f() {
int y = 0 if (k> @)
else
targeti; if (1 > @)
} QY = 15
else target2; else
: }

/

Ref(main) = {j, y} ‘Mod(f) = {x, v}

Shadow Symbolic Execution
Symbolic Execution on Both Versions Concurrently

Old New

if (x % 2 == 0)

=

if (x % == 0)

TRUE FALSE

(x%2=0)A(x%3#0) (x%2#£0)A(x%3=0)

x=8

“Do not hard-code °/’. Use IS ABSOLUTE FILE NAME and dir len
instead. Use stpcpy/stpncpy in place of strncpy/strcpy.”

assert((IS_ABSOLUTE_FILE_NAME (linkname))
== (*linkname_prev =="/"));
if (IS_ABSOLUTE_FILE_NAME (linkname))
return xstrdup (linkname);

ec violation:

na a
if (*linkname =="/'")

return xstrdup (linkname);
7

nameszs X

size_t prefix_len = dir_len (name);
char const *linkbuf = strrchr (name, '/'); -tP - len()

if (linkbuf == NULL) ec violation”
return xstrdup (linkname); na x//y

namess a

assert((prefix_len == 0) == (linkbuf_prev == NULL));
if (prefix_len == 0)
return xstrdup (linkname);

size_t bufsiz = linkbuf - name if (! ISSLASH (name[prefix_len - 1])) ++prefix_len;

stpcpy (stpncpy (p, name, prefix_len), linkname);

char *p = xmalloc (bufsiz + stren (inkname) + 1);

strncpy (p, name, bufsiz); B T P ——r

strcpy (p + bufsiz, linkname);

return p; return p;

