Docovery: Toward Generic Automatic **Document Recovery**

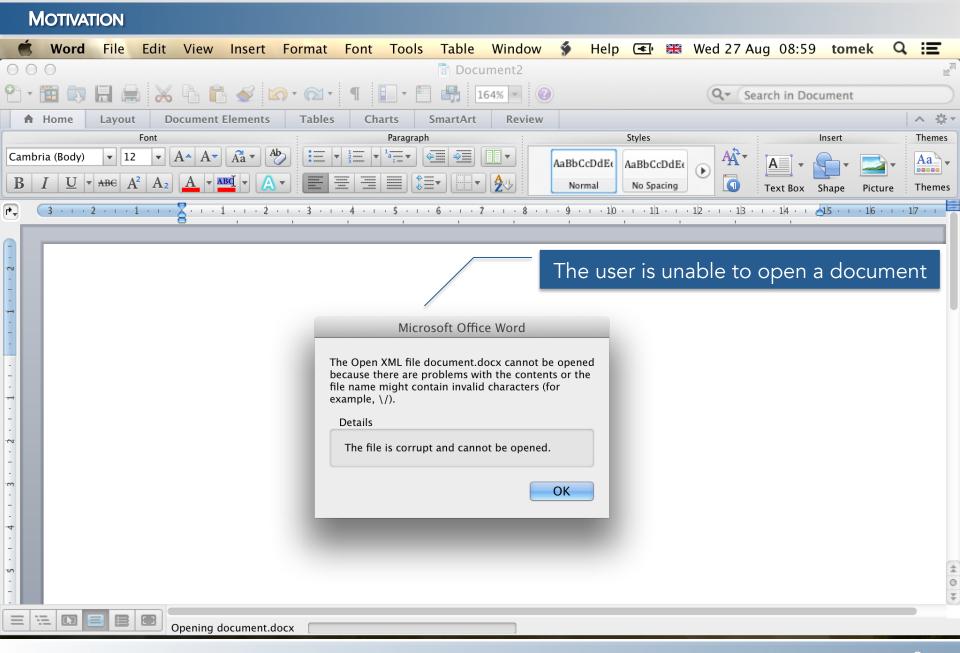
Tomasz Kuchta

Miguel Castro

Cristian Cadar

Manuel Costa

Imperial College London


Microsoft Research

ASE'14, 18th September 2014

This work is supported by Microsoft Research through its PhD Scholarship Programme

Microsoft is a registered trademark of Microsoft Corporation

Document is corrupt

Storage failure, network transfer failure, power outage

Application has bugs

Buffer overflows, divisions by zero

Assertion failures, exceptions

Incompatibility across versions / applications

Such problems are highly user-visible

They account for a large number of security

vulnerabilities

The root cause of the problem

Application is unable to handle corrupt or uncommon documents

Example: pine – a text mode e-mail client Special "From:" field crashes the program

From: "\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"@host.fubar

What can we do about that?

Try to fix the program

Automatic patch generation [GenProg, WCCI'08, ICSE'09; SemFix, ICSE'13; etc.]

Try to protect the program

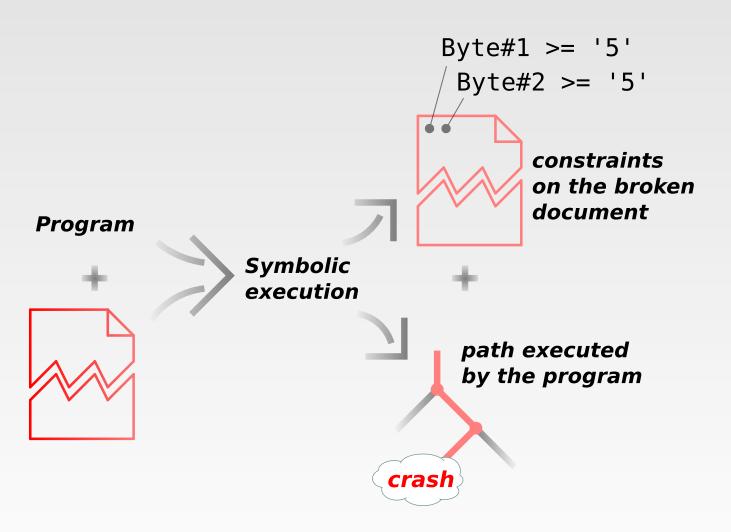
Automatic input filter generation [Vigilante, SOSP'05; Shieldgen, S&P'07; etc.]

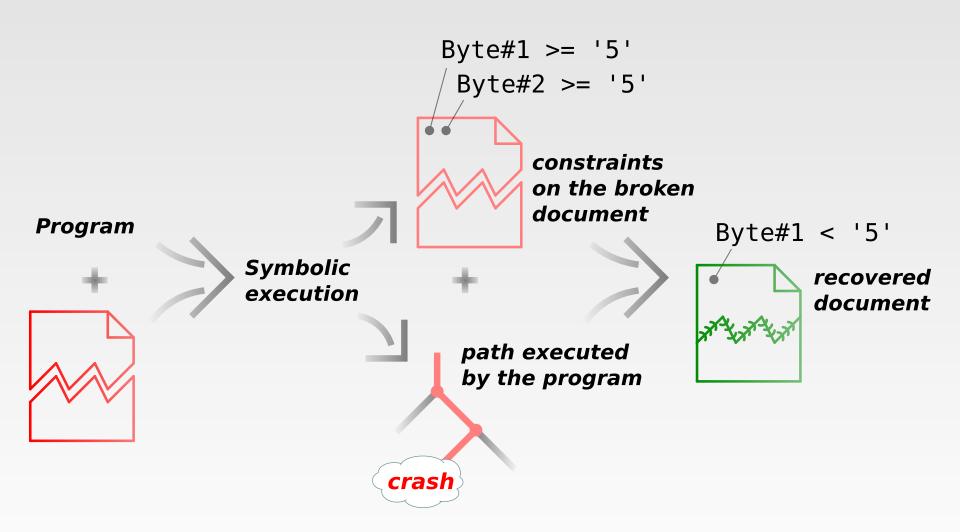
What can we do about that?

Try to fix the document

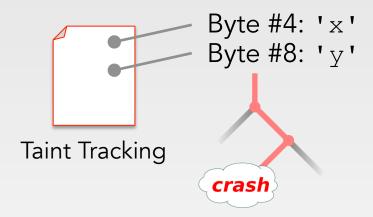
Use format specification [DS repair, OOPSLA'03] Learn and apply the correct values [SOAP, ICSE'12] Truncate the document Try to guess the right value

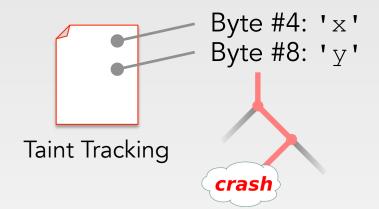
Or ...


Is it possible to fix a broken document,
without assuming any input format,
in a way that preserves the original contents
as much as possible?

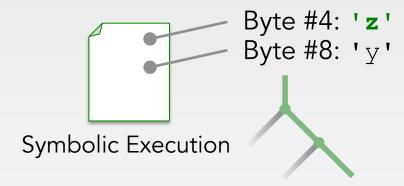

DOCOVERY

DOCOVERY: THE GENERAL IDEA

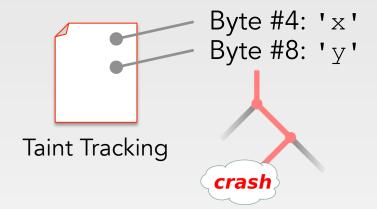

Program

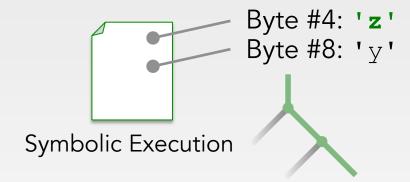


1 Identify Potentially Corrupt Bytes



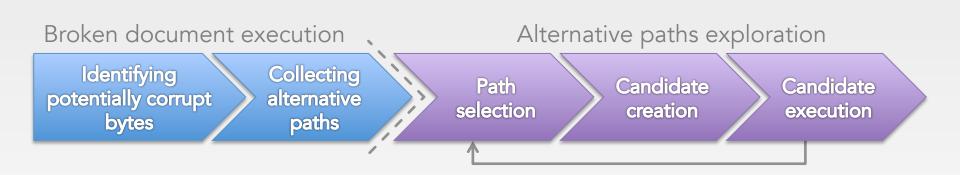
DOCOVERY: MAIN STEPS


1 Identify Potentially Corrupt Bytes


2 Change The Bytes To Execute Another Path

1 Identify Potentially Corrupt Bytes

2 Change The Bytes To Execute Another Path



3 Pick The Best Candidate

Levenshtein distance and manual inspection

Docovery process

Broken document execution

Alternative paths exploration

Identifying potentially corrupt bytes

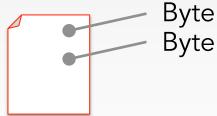
Collecting alternative paths

Path selection

Candidate creation

Candidate execution

Taint tracking


Track the flow of data from a source (input) to a sink (point of crash)

Identifying potentially corrupt bytes

Byte-level precision

No control flow dependencies

No address tainting

Byte #4: 'x'

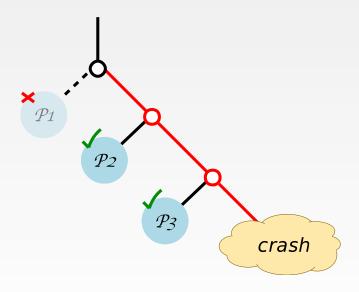
Byte #8: 'y'

Broken document execution

Alternative paths exploration

Collecting potentially corrupt bytes

Path selection


Candidate creation

Candidate creation

Collecting alternative paths

Mark the potentially corrupt bytes as symbolic

Lazily verify feasibility

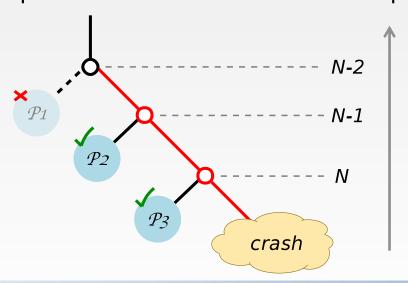
Broken document execution

Alternative paths exploration

Collecting alternative paths

Path selection

Candidate creation


Candidate creation

Candidate execution

Path selection

Last N deepest paths are collected

Start from the paths closest to the crash point

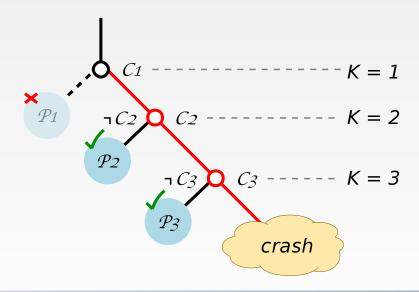
Broken document execution

Alternative paths exploration

Identifying potentially corrupt bytes

Collecting alternative paths

Path selection


Candidate creation

Candidate execution

Negate the Kth constraint and drop the remaining Ask constraint solver for a satisfying assignment

Path P_3 : $C_1 \wedge C_2 \wedge \neg C_3$

Path $P_2: C_1 \land \neg C_2$

Broken document execution

Identifying Collecting

Path

selection

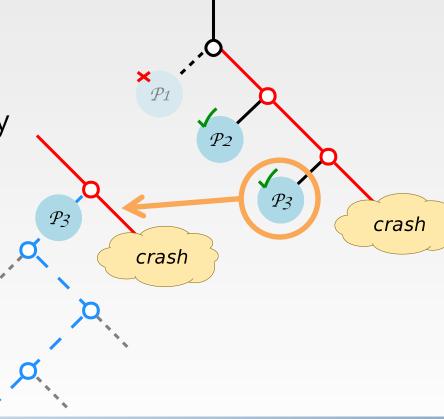
Candidate creation

Alternative paths exploration

Candidate execution

Identifying potentially corrupt bytes

Candidate execution


Store the candidate

Re-run the program natively

alternative

paths

Successful if not crashing

Evaluating candidate documents

Levenshtein distance (edit distance)

Byte-level similarity metric Independent of document format Smaller distance = higher similarity

Semi-automatic evaluation of program output

Looking for warnings / errors, exit code Similarity to the correct output

EVALUATION

Implementation

Built on top of KLEE [OSDI'08]

Using ZESTI functionality [ICSE'12]

Interprets LLVM bitcode of C applications

Benchmarks

pr - a pagination utility
 pine - a text-mode e-mail client
 dwarfdump - a debug information display tool
 readelf - an ELF file information display tool

Benchmark	Document type	Document Sizes	Max number of changed bytes				
pr	Plain text	up to 256 pages / 1080 KB	1				
pine	MBOX mailbox	up to 320 e-mails / 2.3 MB	24				
dwarfdump	DWARF executables	up to 1.1 MB	1				
readelf	ELF object files	up to 1.5 MB	8				

Bugs

Known, real-world bugs injected manually pr, pine, readelf – buffer overflow dwarfdump – division by zero

Benchmark	'Buggy' sequence
pr	Lorem ipsum0x08 0x080x09 EOF
pine	From: "\"\"\"\"\"\"\"\"\"\"\"@host.fubar
dwarfdump	GCC: (Ubuntu/Linaro 4.6.30x00 0x00
readelf	0xFD 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF

Taint tracking results

Regardless of document size

Benchmark	Document	Number of potentially corrupt bytes
pr	1 – 256 pages / 4.4 – 1080 KB	1
pine	5 – 320 e-mails / 13 KB – 2.3MB	25
dwarfdump	62 KB – 1.1 MB	2
readelf	54 KB – 1.5 MB	16

Candidates for pr

Document	'Buggy' sequence
Original	Lorem ipsum0x08 0x08 0x09 EOF
Candidate A	Lorem ipsum0x08 0x08 0x00 EOF
Candidate B	Lorem ipsum0x08 0x080x0C EOF
Candidate C	Lorem ipsum0x08 0x080x0A EOF

All the candidates print out correctly

Candidates for pine

Document	'Buggy' sequence
Original	From: "\"\"\"\"\""@host.fubar
Candidate A	From: "\"\\0x0E\0x0E\"\""@host.fubar
Candidate B	From: "\"\\\\0x0E\0x0E\"\""@host.fubar
Candidate C	From: "\"\\0x00\"\""@host.fubar

	PINE	4	4.44	I	MESSAGE IN	IDEX	Fold	er: IN	NBOX (READ	ONL	Y) Message	1	οf	6 N	EW
	N	1	Dec	5	Bob			(1381)	Subject	1					
	N	2	Dec	9	Alice			(1497)	Subject	2					
	N	3	Dec	10	John			(4627)	Subject	3					
	N	4	Dec	10	Jenny			(1399)	Subject	4					
		5	Dec	16	Brian			(2889)	Subject	5					
	N	6			"/"//3333	333	33333	(81)							
П															
?	Help OTHE	R	CMDS	< 5 >	FldrList [ViewMsg]	P N	PrevMsg NextMsg		PrevPage NextPage		Delete Undelete		Repl Forw	_	l

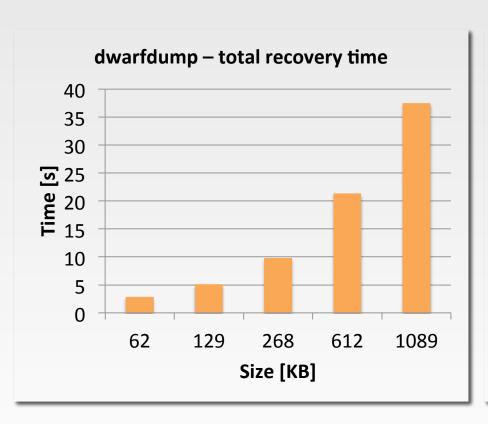
Candidates for dwarfdump

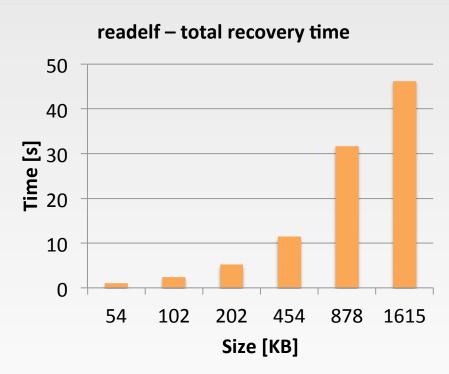
Document	'Buggy' sequence										
Original	GCC: (Ubuntu/Linaro 4.6.30x00 0x00										
Candidate A	GCC: (Ubuntu/Linaro 4.6.30x01 0x00										
Candidate B	GCC: (Ubuntu/Linaro 4.6.30x00 0x01										

Candidate A: debug dump, success return code

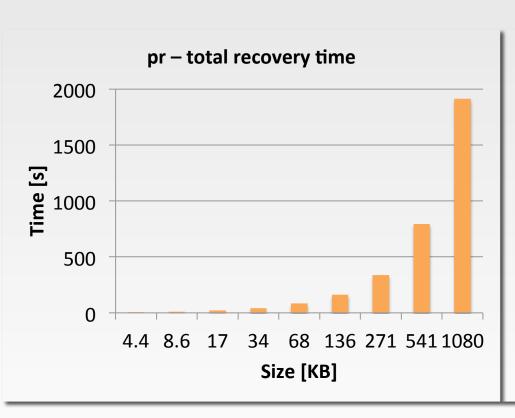
Candidate B: error

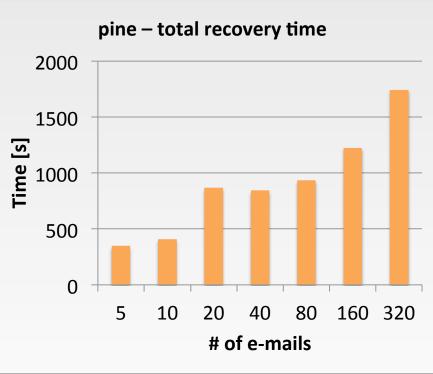
Candidates for readelf

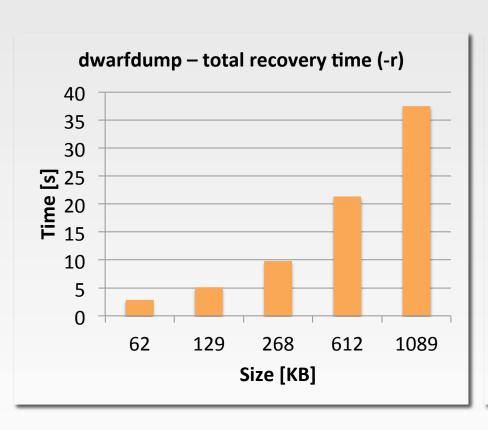

Document	'Buggy' sequence																		
Original		40	01	00	00	00	00	00	00		FD	FF	•••						
Candidate A		40	01	00	00	00	00	00	00		F0	01	00	00	00	00	00	80	
Candidate B	•••	FE	FF		FD	FF	•••												
Candidate C		00	00	00	00	00	00	00	00		FD	FF							

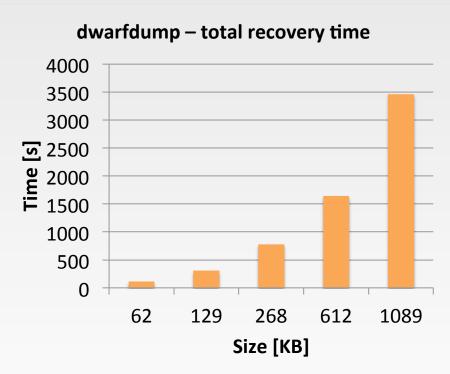

Candidate A: most of output, but with a warning

Candidate B: almost no output and an error

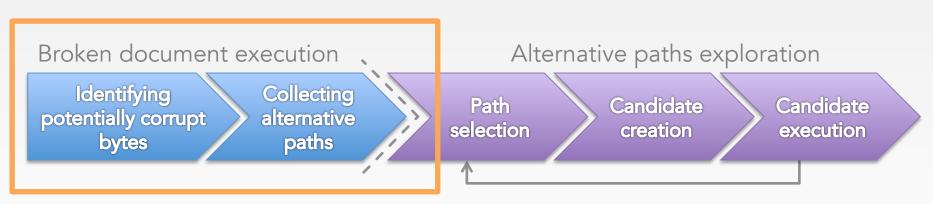

Candidate C: almost no output (no debug data)


Performance varies across applications Sometimes, the recovery is cheap




Performance varies across applications Sometimes, the recovery is expensive

Performance depends on the executed path



Performance

Most time spent on taint tracking and collecting alternative paths

First recovery candidate usually within minutes after path exploration starts

All collected paths usually explored within minutes

Most time

Limitations of Docovery

Fundamental

Scalability: complex, highly-structured documents Supports only byte mutations

Implementation

Can't handle multiple faults

Handles only generic errors

No support for document modifications (read-only)

Requires C source code of the program

Docovery

A novel technique for format-independent document recovery

Uses taint tracking and symbolic execution techniques Recovery candidates explore alternative execution paths

Successfully recovered

Text files

Mailboxes

Executables

Object files

http://srg.doc.ic.ac.uk/projects/docovery

