OOPSLA

ATHENS 2019

=N -
1 I} e

Sun 20 - Fri 25 October 2019

Compiler Fuzzing:
How Much Does It Matter?

Michael Marcozzi* Qiyi Tang® Alastair F. Donaldson Cristian Cadar

*The presented experimental study has been carried out equally by M. Marcozzi and Q. Tang.

Imperial College

Outline

1. Context: compiler fuzzing

Compiler Bugs

Software developers intensively rely on compilers, often with blind confidence
Compilers are software: they have bugs too (~150 fixed bugs/month in LLVM compiler)

In worst case, unnoticed miscompilation (silent generation of wrong code)

400

new
G fixed
---- rejected
unconfirmed

300

200

100

Number of Bugs

History of LLVM Bug Tracking System (2003-2015) [Sun et al., ISSTA’16]}

M. Marcozzi 3 Compiler Fuzzing: How Much Does It Matter?

Compiler Validation (1/2)

e (Classical software validation approaches have been applied to compilers

 Formal verification: CompCert verified compiler, Alive optimisation prover, etc.

e TJesting: LLVM test suite, etc.

include

citation

utput IG!’IGSSIOD p. Bk
often requwem‘ ‘

TOGTORr

M. Marcozzi 4 Compiler Fuzzing: How Much Does It Matter?

Compiler Validation (2/2)

* Recent surge of interest in compiler fuzzing:

 Automatic and massive random generation of test programs to compile

 Automatic miscompilation detection via differential or metamorphic testing

e e.g. 200+ miscompilations found in LLVM by Csmith', EMI2, Oranges and Yarpgen*

1 [Yang et al., PLDI’11] [Regehr et al., PLDI’12] [Chen et al., PLDI’13]
2 Equivalence Modulo Inputs [Le et al., PLDI’14, OOPSLA’15] [Sun et al.,OOPSLA’16]

3 [Nagai et al., T-SLDM] [Nakamura et al., APCCAS’16]
4 https://github.com/intel/yarpgen

C h

M. Marcozzi 5 Compiler Fuzzing: How Much Does It Matter?

https://github.com/intel/yarpgen

Outline

2. Problem: importance of fuzzer-found miscompilations is unclear

Importance of Fuzzer-Found Miscompilations (1/2)

* Audience of our talks on compiler fuzzers often question the importance of found bugs

* |n our experience, this is a contentious debate and people can be poles apart:

In my opinion, compiler bugs are extremely dangerous, period.
Thus, regardless of the real-world impact of compiler bugs, I think that
techniques that can uncover (and help fix) compiler bugs are
extremely valuable.

One anonymous reviewer of this paper at a top P/L conference

I would suggest that compiler developers stop responding to researchers
working toward publishing papers on [fuzzers]. Responses from compiler
maintainers is being becoming a metric for measuring the performance of
[fuzzers], so responding just encourages the trolls.

"The Shape of Code’ weblog author

(former UK representative at ISO International C Standard)

M. Marcozzi / Compiler Fuzzing: How Much Does It Matter?

Importance of Fuzzer-Found Miscompilations (2/2)

* |n this work, we consider a mature compiler in a non-critical environment:

 The compiler has been intensively tested by its developers and users

* Trade-offs between software reliability and cost are acceptable and common

* In this context, doubting the impact of fuzzer-found bugs is reasonable:

€9 It is unclear if mature compilers leave much space to find severe bugs

€9 Fuzzers find bugs affecting generated code, whose patterns may not occur in real code

M. Marcozzi 8 Compiler Fuzzing: How Much Does It Matter?

Outline

3. Goal: a study of the practical impact of miscompilation bugs

Goal and Challenges

* |n this work, our objectives are to:

~ Study the impact of miscompilation bugs in a mature compiler over real apps

v Compare impact of bugs from fuzzers with others (e.g. found by compiling real code)

* Operationally, we aim at overcoming the following challenges:

* Take steps towards a methodology to measure the impact of a miscompilation bug

* Apply it over a significant but tractable set of bugs and real applications

M. Marcozzi 10 Compiler Fuzzing: How Much Does It Matter?

Outline

4. Methodology for bug impact measurement

Bug Impact Measurement Methodology

 Assumption: Restrict to publicly fixed bugs in open-source compilers, to extract

R ’ L
7 . A \‘
1-.\~

‘.‘ . l..\’\ 9
VP iinctd, o %
e
X0 g‘,"‘:."} 2
" g £ * ‘. f
‘*-/ ‘\?‘«'-g e

Fixing Patch
written by developers

M. Marcozzi 12 Compiler Fuzzing: How Much Does It Matter?

Bug Impact Measurement Methodology

 Assumption: Restrict to publicly fixed bugs in open-source compilers, to extract

Y i ."1.)*‘\ fw
"a \ Y %
- Q‘L“A‘wt P |
Y 4 Gl 2 A
il ‘

A

Fixing Patch
written by developers

NN

Buggy Compiler Source

M. Marcozzi 12 Compiler Fuzzing: How Much Does It Matter?

Bug Impact Measurement Methodology

 Assumption: Restrict to publicly fixed bugs in open-source compilers, to extract

\oad
N

D
Fixing Patch

written by developers
NS4 ﬁ Jood

Buggy Compiler Source Fixed Compiler Source

M. Marcozzi 12 Compiler Fuzzing: How Much Does It Matter?

Bug Impact Measurement Methodology

 Assumption: Restrict to publicly fixed bugs in open-source compilers, to extract

\oad
N

)
Fixing Patch
written by developers
RS ﬁ Jood
Buggy Compiler Source Fixed Compiler Source

 Assumption: impact of miscompilation bug = ability to change semantics of real apps

M. Marcozzi 12 Compiler Fuzzing: How Much Does It Matter?

Bug Impact Measurement Methodology

 Assumption: Restrict to publicly fixed bugs in open-source compilers, to extract

s T,
Y i ""a\\\/‘
i #2_*‘_&3’1‘ '
& / ‘f“." 7 v
LV ’
A 4 K

written by developers
N ~4 ﬁ Jood

Buggy Compiler Source Fixed Compiler Source

 Assumption: impact of miscompilation bug = ability to change semantics of real apps

 We estimate the impact of the compiler bug over a real app in three stages:

M. Marcozzi 12 Compiler Fuzzing: How Much Does It Matter?

Bug Impact Measurement Methodology

 Assumption: Restrict to publicly fixed bugs in open-source compilers, to extract

,’Q& T
"a w7 ok R
' “'2"-”:""& :
b & Utnitd Sl
LS ,
f/ T
K R .

)
Fixing Patch
written by developers
LR ﬁ Jood
Buggy Compiler Source Fixed Compiler Source

 Assumption: impact of miscompilation bug = ability to change semantics of real apps

 We estimate the impact of the compiler bug over a real app in three stages:
1. Is the buggy compiler code reached and triggered during compilation?

M. Marcozzi 12 Compiler Fuzzing: How Much Does It Matter?

Bug Impact Measurement Methodology

 Assumption: Restrict to publicly fixed bugs in open-source compilers, to extract

i f“
\ W - h
' “f‘!"-ﬁi“"t :
& Utnitd Sl
q’,,.‘. ¢)
K X O

)
Fixing Patch
written by developers
LR ﬁ Jood
Buggy Compiler Source Fixed Compiler Source

 Assumption: impact of miscompilation bug = ability to change semantics of real apps

 We estimate the impact of the compiler bug over a real app in three stages:
1. Is the buggy compiler code reached and triggered during compilation?

2. How much does a triggered bug change the binary code?

M. Marcozzi 12 Compiler Fuzzing: How Much Does It Matter?

Bug Impact Measurement Methodology

 Assumption: Restrict to publicly fixed bugs in open-source compilers, to extract

i f“
\ W - h
' “f‘!"-ﬁi“"t :
& Utnitd Sl
q’,,.‘. ¢)
K X O

)
Fixing Patch
written by developers
LR ﬁ Jood
Buggy Compiler Source Fixed Compiler Source

 Assumption: impact of miscompilation bug = ability to change semantics of real apps

 We estimate the impact of the compiler bug over a real app in three stages:
1. Is the buggy compiler code reached and triggered during compilation?
2. How much does a triggered bug change the binary code?

3. Can the binary changes lead to differences in binary runtime behaviour?

M. Marcozzi 12 Compiler Fuzzing: How Much Does It Matter?

Stage 1. COmplle -Time Analysis

f (Not.isPowerOf2()
]f*(NOt -sPowerQf2()) . && C->getValue().isPowerOf2() && Not != C->getValue())
/* Code transformation */ . S

/* Code transformation */

fix for
LLVM bug
\()6(]&] 26323
R 9000’

Buggy Compiler Source Fixed Compiler Source

M. Marcozzi 13 Compiler Fuzzing: How Much Does It Matter?

Stage 1. COmplle -Time Analysis

f (Not.isPowerOf2()
]f*(NOt -sPowerQf2()) . && C->getValue().isPowerOf2() && Not != C->getValue())
/* Code transformation */ . S

/* Code transformation */

fix for
LLVM bug
\()6(]&] 26323
R 9000’

Buggy Compiler Source Fixed Compiler Source

warn("Fixing patch reached!”);
if (Not.isPowerOf2()) {
if (1(C->getValue().isPowerOf2() && Not != C->getValue()))
warn("Bug triggered!”);
else /* Code transformation */ }

Warning-Laden Compiler

M. Marcozzi 13 Compiler Fuzzing: How Much Does It Matter?

Stage 1. COmplle -Time Analysis

f (Not.isPowerOf2()
]f*(NOt -sPowerQf2()) . && C->getValue().isPowerOf2() && Not != C->getValue())
/* Code transformation */ . S

/* Code transformation */

fix for
LLVM bug
\()6(]&] 26323
R 9000’

Buggy Compiler Source Fixed Compiler Source

warn("Fixing patch reached!”);
if (Not.isPowerOf2()) {
if (1(C->getValue().isPowerOf2() && Not != C->getValue()))
warn("Bug triggered!”);
else /* Code transformation */ }

Warning-Laden Compiler

M. Marcozzi 13 Compiler Fuzzing: How Much Does It Matter?

Stage 1. COmplle -Time Analysis

f (Not.isPowerOf2()
]f*(NOt -sPowerQf2()) . && C->getValue().isPowerOf2() && Not != C->getValue())
/* Code transformation */ . S

/* Code transformation */

fix for
LLVM bug
\()6(]&] 26323
R 9000’

Buggy Compiler Source Fixed Compiler Source

warn("Fixing patch reached!”);
if (Not.isPowerOf2()) {
if (1(C->getValue().isPowerOf2() && Not != C->getValue()))
warn("Bug triggered!”);

else /* Code transformation */ } ~grep logs
"Fixing patch reached!”

Warning-Laden Compiler | "Bug triggered!"

M. Marcozzi 13 Compiler Fuzzing: How Much Does It Matter?

Stage 2: Syntactic Binary Analysis

Buggy Compiler

\oad

&

if (Not.isPowerOf2())

&

if (Not.isPowerOf2()
&& C->getValue().isPowerOf2() && Not != C->getValue())

goOd

Fixed Compiler

M. Marcozzi 14 Compiler Fuzzing: How Much Does It Matter?

Stage 2: Syntactic Binary Analysis

Buggy Compiler

\oad
\)

&

/ if (Not.isPowerOf2())

C \ if (Not.isPowerOf2()

&& C->getValue().isPowerOf2() && Not != C->getValue())

&

goOd

Fixed Compiler

Stage 2: Syntactic Binary Analysis

Buggy Compiler

\oad
\),

- /
/ if (Not.isPowerOf2())

if (Not.isPowerOf2()
&& C->getValue().isPowerOf2() && Not != C->getValue())

goOd

Fixed Compiler

M. Marcozzi 14 Compiler Fuzzing: How Much Does It Matter?

Stage 2: Syntactic Binary Analysis

Buggy Compiler

\oad
\),

&

/ if (Not.isPowerOf2())

&

if (Not.isPowerOf2()
&& C->getValue().isPowerOf2() && Not != C->getValue())

goOd

Fixed Compiler

M. Marcozzi 14 Compiler Fuzzing: How Much Does It Matter?

syntactic erences
In assembly

e

- {101

Stage 3: Dynamic Binary Analysis

Stage 3: Dynamic Binary Analysis

Stage 3: Dynamic Binary Analysis

Stage 3: Dynamic Binary Analysis

semantically
equivalent

Stage 3: Dynamic Binary Analysis

XX: mov $5, Y%eax

£

XX: addl $4, %esp

|

. (101 |
|o11

Stage 3: Dynamic Binary Analysis

=R

XX: mov $5, Y%eax

£

XX: addl $4, %esp

|

. (101 |
|o11

Manual crafting of inputs
to trigger runtime divergence

Outline

5. Experiments and results

Experiments (1/2)

We apply our bug impact measurement methodology over a sample of:

e 45 miscompilations bugs in the open-source LLVM compiler (C/C++ — x86_64)

o 2/ fuzzer-found bugs (12% of miscompilations from Csmith, EMI, Orange and Yarpgen)

. and

¥

M. Marcozzi 17 Compiler Fuzzing: How Much Does It Matter?

Experiments (2/2)

We apply our bug impact measurement methodology over a sample of:

* 309 Debian packages totalling 10M+ lines of C/C++ code

* Not part of the LLVM test suite

* Diverse set of applications w.r.t. type, size, popularity and maturity

L 7 / > grep

// APACHE — samb

M. Marcozzi 18 Compiler Fuzzing: How Much Does It Matter?

A lot of manual effort and 56 months of computation happen here

100%

75%

50%

25%

Fraction of package builds

0%

. 10 bugs affecting real code
8 formal verification bugs

70%

43%

Patch reached

Stage 1a

Results

W 27 fuzzer-found bugs

28%
13%
6% 7%
R 0.01% 0.01% 0%
Bug triggered Different binary Test divergence

Stage 1b

M. Marcozzi

20

Stage 2

Compiler Fuzzing: How Much Does It Matter?

Stage 3

100%

75%

50%

25%

Fraction of package builds

0%

70%

43%

Patch reached

Stage 1a

Results

W 27 fuzzer-found bugs
. 10 bugs affecting real code
8 formal verification bugs

0.01%

0%

. Only a tiny fraction of the
o
code ig affected
13%
6% 7%
B 2 0.01%
Bug triggered Different binary

Stage 1b

M. Marcozzi

20

Stage 2

Compiler Fuzzing: How Much Does It Matter?

Stage 3

Test divergence

Results

W 27 fuzzer-found bugs
100% 10 bugs affecting real code
8 formal verification bugs

2
O
a2 7% | 70%
)
o)
©
>
8 50%
-? 43% One tegt failure in zsh
5 28% (+ one extra tegt failure in SQLite)
o 25% : :
£ 13% One tegt failure in leveldb
6% R £ /
0% R 0.01% 0.01% 0%
Patch reached Bug triggered Different binary Test divergence
Stage 1a Stage 1b Stage 2 Stage 3

M. Marcozzi 20 Compiler Fuzzing: How Much Does It Matter?

100%

75%

50%

25%

Fraction of package builds

0%

. 10 bugs affecting real code
8 formal verification bugs

70%

43%

Patch reached

Stage 1a

Results

W 27 fuzzer-found bugs

28%

13%

Sample of Package Test Suites
47% average statement coverage

Half suitee > 50% statement coverage

One tegt failure in zgh
(4 one exira teat failure in SQLite)
/ One tegt failure in leveldb
7%

6% /

R 0.01% 0.01% 0%

Bug triggered
Stage 1b

M. Marcozzi

20

Different binary Test divergence

Stage 2 Stage 3

Compiler Fuzzing: How Much Does It Matter?

100%

75%

50%

25%

Fraction of package builds

0%

. 10 bugs affecting real code
8 formal verification bugs

70%

43%

Patch reached

Stage 1a

Results

W 27 fuzzer-found bugs

28%

Manual [ngpection

the ~50 ingpected binary differences...
either have no semantic impact
or require very specific

runtime circumgtances
13% to impact behaviour
6% . 7%
R 0.01% 0.01% 0%
Bug triggered Different binary Test divergence

Stage 1b

M. Marcozzi

20

Stage 2 Stage 3

Compiler Fuzzing: How Much Does It Matter?

Outline

6. Conclusions

Conclusions

 Our two major take-aways are that miscompilations bugs in a mature compiler...

e seldom impact app reliability (as probed by test suites and manual inspection)

* have similar impact no matter they were found in real or fuzzer-generated code

A possible explainer for these results is that, in a mature compiler...

all the bugs affecting patterns frequent in real code have already been fixed

only corner-case bugs remain, affecting real and generated code similarly

M. Marcozzi 22 Compiler Fuzzing: How Much Does It Matter?

Thank you for listening!

Compiler Fuzzing: How Much Does It Matter?

MICHAEL MARCOZZI*,QlYI TANG", ALASTAIR F. DONALDSON, and CRISTIAN CADAR,
Imperial College London, United Xingdom

Despite much recent interest in randomised testing (fuzzing) of compilers, the practical impact of fuzzer-found
compiler bugs on real-world applications has barely been assessed. We present the first quantitative and
qualitative study of the tangible impact of miscompilation bugs in a mature compiler. We follow a rigorous
methodology where the bug impact over the compiled application is evaluated based on (1) whether the bug
appears to trigger during compilation; (2) the extent to which generated assembly code changes syntactically
duc to triggering of the bug; and (3) whether such changes cause regression test suite failures, or whether
we can manually find application inputs that trigger execution divergence due to such charges. The study
is conducted with respect to the compilation of more than 10 million lines of C/C++ code from 309 Debian
packages, using 12% of the historical and now fixed miscompilation bugs found by four state-of-the-art fuzzers
in the Clang/LLVM compiler, as well as 18 bugs found by human users compiling real code or as a by-product
of formal verification efforts. The results show that almost half of the fuzzer-found bugs propagate to the
generated binaries for at least one package, in which case only a very small part of the binary is typically
affected, yet causing two failures when running the test suites of all the impacted packages. User-reported
and formal verification bugs do not exhibit a higher impact, with a lower rate of triggered bugs and one test
failure. The manual analysis of a selection of the syntactic changes caused by some of our bugs (fuzzer-found
and non fuzzer-found) in package assembly code, shows that either these changes have no semantic impact or
that they would require very specific runtime circumstances to trigger execution divergence.

CCS Concepts: « Software and its engineering — Compilers; Software verification and validation.
Additional Key Words and Phrases: software testing, compilers, fuzzing, bug impact, Clang, LLVM

ACM Reference Format:

Michaél Marcozzi, Qiyi Tang, Alastair F. Donaldson, and Cristian Cadar. 2019. Compiler Fuzzing: How
Much Does It Matter?. Proc. ACM Program. Lang. 3, OOPSLA, Article 155 (October 2019), 29 pages. https:
//doi.org/10.1145/3360581

1 INTRODUCTION

Context. Compilers are among the most central components in the software development toolchain.

While software developers often rely on compilers with blind confidence, bugs in state-of-the-art
compilers are frequent [Sun et al. 2016b]; for example, hundreds of bugs in the Clang/LLVM and
GCC compilers are fixed each month. The consequence of a functional compiler bug may be a
compile-time crash or a miscompilation, where wrong target code is silently generated. While
compiler crashes are spotted as soon as they occur, miscompilations can go unnoticed until the
compiled application fails in production, with potentially serious consequences. Automated compiler

*‘Michaél Marcozzi and Qiyi Tang have contributed equally to the presented experimental study.

Authors’ address: Michaél Marcozzi; Qiyi Tang; Alastair F. Donaldson; Cristian Cadar,
Imperial College London, London, United Kingdom, michael marcozzi@gmail.com, giyi.tang71@gmail.com, ¢.cadar@
imperialac.uk, alastair.donaldson@imperial.ac.uk.

This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2019 Copyright held by the owner/author(s).
2475-1421/2019/10-ART155
https://doi.org/10.1145/3360581

Proc. ACM Program. Lang., Vol. 3. No. OOPSLA, Article 155. Publication date: October 2019

> Preprint and artifact available

https://srg.doc.ic.ac.uk/projects/compiler-bugs

position available

https://srg.doc.ic.ac.uk/vacancies/postdoc-comp-pass-19

www.marcozzi.net ,@michaelmarcozzi

https://srg.doc.ic.ac.uk/projects/compiler-bugs
https://srg.doc.ic.ac.uk/vacancies/postdoc-comp-pass-19

