
Compiler Fuzzing:

How Much Does It Matter?

Michaël Marcozzi* Qiyi Tang* Alastair F. Donaldson Cristian Cadar

*The presented experimental study has been carried out equally by M. Marcozzi and Q. Tang.

Outline
1. Context: compiler fuzzing

2. Problem: importance of fuzzer-found miscompilations is unclear

3. Goal: a study of the practical impact of miscompilation bugs

4. Methodology for bug impact measurement

5. Experiments and results

6. Conclusions

Compiler Bugs
• Software developers intensively rely on compilers, often with blind confidence

• Compilers are software: they have bugs too (~150 fixed bugs/month in LLVM compiler)

• In worst case, unnoticed miscompilation (silent generation of wrong code)

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?3

History of LLVM Bug Tracking System (2003-2015) [Sun et al., ISSTA’16]

Compiler Validation (1/2)
• Classical software validation approaches have been applied to compilers

• Formal verification: CompCert verified compiler, Alive optimisation prover, etc.

• Testing: LLVM test suite, etc.

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?4

Compiler Validation (2/2)
• Recent surge of interest in compiler fuzzing:

• Automatic and massive random generation of test programs to compile

• Automatic miscompilation detection via differential or metamorphic testing

• e.g. 200+ miscompilations found in LLVM by Csmith1, EMI2, Orange3 and Yarpgen4

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?5

1 [Yang et al., PLDI’11] [Regehr et al., PLDI’12] [Chen et al., PLDI’13]

2 Equivalence Modulo Inputs [Le et al., PLDI’14, OOPSLA’15] [Sun et al.,OOPSLA’16]

3 [Nagai et al., T-SLDM] [Nakamura et al., APCCAS’16]

4 https://github.com/intel/yarpgen

https://github.com/intel/yarpgen

Outline
1. Context: compiler fuzzing

2. Problem: importance of fuzzer-found miscompilations is unclear

3. Goal: a study of the practical impact of miscompilation bugs

4. Methodology for bug impact measurement

5. Experiments and results

6. Conclusions

Importance of Fuzzer-Found Miscompilations (1/2)

• Audience of our talks on compiler fuzzers often question the importance of found bugs

• In our experience, this is a contentious debate and people can be poles apart:

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?7

I would suggest that compiler developers stop responding to researchers
working toward publishing papers on [fuzzers]. Responses from compiler

maintainers is being becoming a metric for measuring the performance of
[fuzzers], so responding just encourages the trolls.

’The Shape of Code’ weblog author
(former UK representative at ISO International C Standard)

In my opinion, compiler bugs are extremely dangerous, period.
Thus, regardless of the real-world impact of compiler bugs, I think that
techniques that can uncover (and help fix) compiler bugs are
extremely valuable.

One anonymous reviewer of this paper at a top P/L conference

Importance of Fuzzer-Found Miscompilations (2/2)

• In this work, we consider a mature compiler in a non-critical environment:

• The compiler has been intensively tested by its developers and users

• Trade-offs between software reliability and cost are acceptable and common

• In this context, doubting the impact of fuzzer-found bugs is reasonable:

 It is unclear if mature compilers leave much space to find severe bugs

 Fuzzers find bugs affecting generated code, whose patterns may not occur in real code

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?8

Outline
1. Context: compiler fuzzing

2. Problem: importance of fuzzer-found miscompilations is unclear

3. Goal: a study of the practical impact of miscompilation bugs

4. Methodology for bug impact measurement

5. Experiments and results

6. Conclusions

Goal and Challenges
• In this work, our objectives are to:

 Show specifically that compiler fuzzing matters or does not matter

 Study the impact of miscompilation bugs in a mature compiler over real apps

 Compare impact of bugs from fuzzers with others (e.g. found by compiling real code)

• Operationally, we aim at overcoming the following challenges:

• Take steps towards a methodology to measure the impact of a miscompilation bug

• Apply it over a significant but tractable set of bugs and real applications

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?10

Outline
1. Context: compiler fuzzing

2. Problem: importance of fuzzer-found miscompilations is unclear

3. Goal: a study of the practical impact of miscompilation bugs

4. Methodology for bug impact measurement

5. Experiments and results

6. Conclusions

• Assumption: Restrict to publicly fixed bugs in open-source compilers, to extract

Bug Impact Measurement Methodology

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?12

Fixing Patch
written by developers

• Assumption: Restrict to publicly fixed bugs in open-source compilers, to extract

Bug Impact Measurement Methodology

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?12

Buggy Compiler Source

Fixing Patch
written by developers

• Assumption: Restrict to publicly fixed bugs in open-source compilers, to extract

Bug Impact Measurement Methodology

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?12

Buggy Compiler Source Fixed Compiler Source

Fixing Patch
written by developers

• Assumption: Restrict to publicly fixed bugs in open-source compilers, to extract

Bug Impact Measurement Methodology

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?12

Buggy Compiler Source Fixed Compiler Source

Fixing Patch
written by developers

• Assumption: impact of miscompilation bug = ability to change semantics of real apps

• Assumption: Restrict to publicly fixed bugs in open-source compilers, to extract

Bug Impact Measurement Methodology

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?12

Buggy Compiler Source Fixed Compiler Source

Fixing Patch
written by developers

• Assumption: impact of miscompilation bug = ability to change semantics of real apps

• We estimate the impact of the compiler bug over a real app in three stages:

• Assumption: Restrict to publicly fixed bugs in open-source compilers, to extract

Bug Impact Measurement Methodology

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?12

Buggy Compiler Source Fixed Compiler Source

Fixing Patch
written by developers

• Assumption: impact of miscompilation bug = ability to change semantics of real apps

• We estimate the impact of the compiler bug over a real app in three stages:
1. Is the buggy compiler code reached and triggered during compilation?

• Assumption: Restrict to publicly fixed bugs in open-source compilers, to extract

Bug Impact Measurement Methodology

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?12

Buggy Compiler Source Fixed Compiler Source

Fixing Patch
written by developers

• Assumption: impact of miscompilation bug = ability to change semantics of real apps

• We estimate the impact of the compiler bug over a real app in three stages:
1. Is the buggy compiler code reached and triggered during compilation?
2. How much does a triggered bug change the binary code?

• Assumption: Restrict to publicly fixed bugs in open-source compilers, to extract

Bug Impact Measurement Methodology

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?12

Buggy Compiler Source Fixed Compiler Source

Fixing Patch
written by developers

• Assumption: impact of miscompilation bug = ability to change semantics of real apps

• We estimate the impact of the compiler bug over a real app in three stages:
1. Is the buggy compiler code reached and triggered during compilation?
2. How much does a triggered bug change the binary code?
3. Can the binary changes lead to differences in binary runtime behaviour?

Stage 1: Compile-Time Analysis

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?13

Buggy Compiler Source Fixed Compiler Source

if (Not.isPowerOf2())
/* Code transformation */

if (Not.isPowerOf2()
 && C->getValue().isPowerOf2() && Not != C->getValue())
 /* Code transformation */

fix for
LLVM bug

#26323

Stage 1: Compile-Time Analysis

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?13

Buggy Compiler Source Fixed Compiler Source

if (Not.isPowerOf2())
/* Code transformation */

if (Not.isPowerOf2()
 && C->getValue().isPowerOf2() && Not != C->getValue())
 /* Code transformation */

fix for
LLVM bug

#26323

warn("Fixing patch reached!");
if (Not.isPowerOf2()) {

 if (!(C->getValue().isPowerOf2() && Not != C->getValue()))
 warn("Bug triggered!");

 else /* Code transformation */ }

Warning-Laden Compiler

Stage 1: Compile-Time Analysis

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?13

Buggy Compiler Source Fixed Compiler Source

if (Not.isPowerOf2())
/* Code transformation */

if (Not.isPowerOf2()
 && C->getValue().isPowerOf2() && Not != C->getValue())
 /* Code transformation */

fix for
LLVM bug

#26323

warn("Fixing patch reached!");
if (Not.isPowerOf2()) {

 if (!(C->getValue().isPowerOf2() && Not != C->getValue()))
 warn("Bug triggered!");

 else /* Code transformation */ }

Warning-Laden Compiler

CCC

Stage 1: Compile-Time Analysis

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?13

Buggy Compiler Source Fixed Compiler Source

if (Not.isPowerOf2())
/* Code transformation */

if (Not.isPowerOf2()
 && C->getValue().isPowerOf2() && Not != C->getValue())
 /* Code transformation */

fix for
LLVM bug

#26323

warn("Fixing patch reached!");
if (Not.isPowerOf2()) {

 if (!(C->getValue().isPowerOf2() && Not != C->getValue()))
 warn("Bug triggered!");

 else /* Code transformation */ }

Warning-Laden Compiler

grep logs

"Fixing patch reached!"

| "Bug triggered!"

CCC

Stage 2: Syntactic Binary Analysis

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?14

Buggy Compiler

if (Not.isPowerOf2())

Fixed Compiler

if (Not.isPowerOf2()
 && C->getValue().isPowerOf2() && Not != C->getValue())

Stage 2: Syntactic Binary Analysis

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?14

Buggy Compiler

if (Not.isPowerOf2())

Fixed Compiler

if (Not.isPowerOf2()
 && C->getValue().isPowerOf2() && Not != C->getValue())

CCC

Stage 2: Syntactic Binary Analysis

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?14

Buggy Compiler

if (Not.isPowerOf2())

Fixed Compiler

if (Not.isPowerOf2()
 && C->getValue().isPowerOf2() && Not != C->getValue())

CCC

Stage 2: Syntactic Binary Analysis

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?14

Buggy Compiler

if (Not.isPowerOf2())

Fixed Compiler

if (Not.isPowerOf2()
 && C->getValue().isPowerOf2() && Not != C->getValue())

Check for
syntactic differences

in assemblyCCC

Stage 3: Dynamic Binary Analysis

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?15

Stage 3: Dynamic Binary Analysis

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?15

Stage 3: Dynamic Binary Analysis

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?15

Count divergent
test results

Stage 3: Dynamic Binary Analysis

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?15

Count divergent
test results

No test divergence
does not mean

that binaries are
semantically
equivalent

Stage 3: Dynamic Binary Analysis

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?15

XX: mov $5, %eax

≠
XX: addl $4, %esp

Stage 3: Dynamic Binary Analysis

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?15

Manual crafting of inputs
to trigger runtime divergence

XX: mov $5, %eax

≠
XX: addl $4, %esp

Outline
1. Context: compiler fuzzing

2. Problem: importance of fuzzer-found miscompilations is unclear

3. Goal: a study of the practical impact of miscompilation bugs

4. Methodology for bug impact measurement

5. Experiments and results

6. Conclusions

Experiments (1/2)
We apply our bug impact measurement methodology over a sample of:

• 45 miscompilations bugs in the open-source LLVM compiler (C/C++ → x86_64)

• 27 fuzzer-found bugs (12% of miscompilations from Csmith, EMI, Orange and Yarpgen)

• 10 bugs detected by compiling real code and 8 bugs from Alive formal verification tool

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?17

We apply our bug impact measurement methodology over a sample of:

• 309 Debian packages totalling 10M+ lines of C/C++ code

• Not part of the LLVM test suite

• Diverse set of applications w.r.t. type, size, popularity and maturity

Experiments (2/2)

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?18

> grep

A lot of manual effort and 5 months of computation happen here

Fr
ac

tio
n

of
 p

ac
ka

ge
 b

ui
ld

s

0%

25%

50%

75%

100%

Patch reached Bug triggered Different binary Test divergence
0%

7%
13%

43%

0.01%2%

19%

65%

0.01%
6%

28%

70%

27 fuzzer-found bugs
10 bugs affecting real code
8 formal verification bugs

Results

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?20

Stage 1a Stage 2 Stage 3Stage 1b

Fr
ac

tio
n

of
 p

ac
ka

ge
 b

ui
ld

s

0%

25%

50%

75%

100%

Patch reached Bug triggered Different binary Test divergence
0%

7%
13%

43%

0.01%2%

19%

65%

0.01%
6%

28%

70%

27 fuzzer-found bugs
10 bugs affecting real code
8 formal verification bugs

Results

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?20

Stage 1a Stage 2 Stage 3

Only a tiny fraction of the
code is affected

Stage 1b

Fr
ac

tio
n

of
 p

ac
ka

ge
 b

ui
ld

s

0%

25%

50%

75%

100%

Patch reached Bug triggered Different binary Test divergence
0%

7%
13%

43%

0.01%2%

19%

65%

0.01%
6%

28%

70%

27 fuzzer-found bugs
10 bugs affecting real code
8 formal verification bugs

Results

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?20

Stage 1a Stage 2 Stage 3

One test failure in zsh
(+ one extra test failure in SQLite)

One test failure in leveldb

Stage 1b

Fr
ac

tio
n

of
 p

ac
ka

ge
 b

ui
ld

s

0%

25%

50%

75%

100%

Patch reached Bug triggered Different binary Test divergence
0%

7%
13%

43%

0.01%2%

19%

65%

0.01%
6%

28%

70%

27 fuzzer-found bugs
10 bugs affecting real code
8 formal verification bugs

Sample of Package Test Suites
47% average statement coverage
Half suites > 50% statement coverage

Results

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?20

Stage 1a Stage 2 Stage 3

One test failure in zsh
(+ one extra test failure in SQLite)

One test failure in leveldb

Stage 1b

Fr
ac

tio
n

of
 p

ac
ka

ge
 b

ui
ld

s

0%

25%

50%

75%

100%

Patch reached Bug triggered Different binary Test divergence
0%

7%
13%

43%

0.01%2%

19%

65%

0.01%
6%

28%

70%

27 fuzzer-found bugs
10 bugs affecting real code
8 formal verification bugs

Manual Inspection
the ~50 inspected binary differences…

either have no semantic impact
or require very specific
runtime circumstances

to impact behaviour

Results

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?20

Stage 1a Stage 2 Stage 3Stage 1b

Outline
1. Context: compiler fuzzing

2. Problem: importance of fuzzer-found miscompilations is unclear

3. Goal: a study of the practical impact of miscompilation bugs

4. Methodology for bug impact measurement

5. Experiments and results

6. Conclusions

Conclusions
• Our two major take-aways are that miscompilations bugs in a mature compiler…

• seldom impact app reliability (as probed by test suites and manual inspection)

• have similar impact no matter they were found in real or fuzzer-generated code

• A possible explainer for these results is that, in a mature compiler…

 all the bugs affecting patterns frequent in real code have already been fixed

 only corner-case bugs remain, affecting real and generated code similarly

M. Marcozzi Compiler Fuzzing: How Much Does It Matter?22

Thank you for listening!
> Preprint and artifact available
 https://srg.doc.ic.ac.uk/projects/compiler-bugs

 www.marcozzi.net @michaelmarcozzi

> Postdoc position available
 https://srg.doc.ic.ac.uk/vacancies/postdoc-comp-pass-19

https://srg.doc.ic.ac.uk/projects/compiler-bugs
https://srg.doc.ic.ac.uk/vacancies/postdoc-comp-pass-19

