Generously
sponsored by

Toward More Scalable Symbolic Execution

via Code Chopping

Cristian Cadar
Department of Computing

|mperia| College ((@) SOFTWARE RELIABILITY

London GROUP

Joint work with
David Trabish and Noam Rinetzky (Tel Aviv University)
Timotej Kapus and Andrea Mattavelli (Imperial College London)

Engineering and
Physical Sciences
Research Council

TAPAS Workshop
19 November 2020

Symbolic Execution
or Dynamic Symbolic Execution (DSE)

Program analysis technique for automatically exploring paths through a program

Applications in:
e Bug finding
* Test generation

* Vulnerability detection and
exploitation

e Equivalence checking
* Debugging

* Program repair

* efc. etc.

2/59

Modern Symbolic Execution

review articles

DOI:10.1145/2408776.2408795

The challenges—and great promise—
of modern symbolic execution techniques,
and the tools to help implement them.

‘ BY CRISTIAN CADAR AND KOUSHIK SEN

Symbolic
Execution

for Software
Testing: Three
Decades Later

SYMBOLIC EXECUTION HAS garnered a lot of attention
in recent years as an effective technique for generating
high-coverage test suites and for finding deep errors
in complex software applications. While the key idea
behind symbolic execution was introduced more
than three decades ago,*># it has only recently been
made practical, as a result of significant advances
in constraint satisfiability,' and of more scalable
dynamic approaches that combine concrete and
symbolic execution.**®

Symbolic execution is typically used in software
testing to explore as many different program paths as
possible in a given amount of time, and for each path to
generate a set of concrete input values exercising it, and

82 COMMUNICATIONS OF THE ACM | FESRUARY 2013 | VOL.S6 | NO.2

check for the presence of various
kinds of errors including assertion
violations, uncaught exceptions, se-
curity vulnerabilities, and memory
corruption. The ability to generate
concrete test inputs is one of the ma-
jor strengths of symbolic execution:
from a test generation perspective, it
allows the creation of high-coverage
test suites, while from a bug-finding
perspective, it provides developers
with a concrete input that triggers the
bug, which can be used to confirm the
error independently of the symbolic
execution tool that generated it.

Furthermore, note that in terms
of finding errors on a given program
path, symbolic execution is much
more powerful than traditional dy-
namic execution techniques such as
those implemented by popular tools
like Valgrind® or Purify,** because it
has the ability to find a bug if there are
any buggy inputs on that path, rather
than depending on having a concrete
input that triggers the bug.

Finally, unlike other program analy-
sis techniques, symbolic execution is
not limited to finding generic errors
such asbuffer overflows, but can reason
about higher-level program properties,
such as complex program assertions.

This article gives an overview of
symbolic execution by showing how it

key insights

® Modern symbolic execution techniques
provide an effective way to automatically
generate test inputs for real-world
software. Such inputs can achieve high
test coverage and find corner-case bugs
such as buffer overflows, uncaught
exceptions, and assertion violations.

® Symbolic execution works by exploring
as many program paths as possible in
agiven time budget, creating logical
formula encoding the explored paths, and
using a constraint solver to generate test
inputs for feasible execution paths.

® Modern symbolic execution techniques
mix concrete and symbolic execution
and benefit from significant advances in
constraint solving to alleviate limitations
‘which prevented traditional symbolic
execution from being useful in practice
for about 30 years.

[Cadar and Sen, CACM 2013]

Symbolic execution introduced in 1970s
* Boyer, Elspass, Levitt (SRI)
* Clarke (UMass Amherst)
* King (IBM Research)

Revived in 2005 in the form of dynamic
symbolic execution™
* DART system (Bell Labs)

* EGT system (Stanford)

“aka concolic execution, whitebox fuzzing, etc.

3/59

Dynamic Symbolic Execution

PyExZ3 gymDroid KLOVER JCUTE

Otter
SAGE PathGrind SymJS

BinSE CREST — Miasm

Symbolic
PathFinder 4

» DART Ki te;?
LDSE .

JalangiZ2

angr

4/59

/ Webpage: https://klee.github.io/
M Code: https://github.com/klee/

Active user and developer base with over 300 subscribers on the mailing list and over 70 contributors
listed on GitHub

Academic impact:
* SIGOPS Hall of Fame Award (KLEE paper) and ACM CCS Test of Time Award (EXE paper)
* Around 3K citations to original KLEE paper (OSDI 2008)

* From many different research communities: testing, verification, systems, software engineering,
programming languages, security, etc.

* Many different systems using KLEE: AEG, Angelix , BugRedux , Cloud9, GKLEE, KleeNet, KLEE-UC, S2E,
SemFix, etc.

Growing impact in industry:

* Baidu: [KLEE Workshop 2018], Fujitsu: [PPoPP 2012], [CAV 2013], [ICST 2015], [IEEE Software 2017], [KLEE
Workshop 2018], Hitachi: [CPSNA 2014], [ISPA 2015], [EUC 2016], Intel: [WOOT 2015], NASA Ames: [NFM
2014], Samsung: [2x KLEE Workshop 2018], Trail of Bits: https://blog.trailofbits.com/, etc.

5/59

From Whole-Program Analysis...
...10 More Localized Tasks

Most work on modern symbolic execution:
* Whole-program test generation
* Whole-program bug-finding

More recently attention shifted to more localized tasks:
* Patch testing

* Debugging

» Bug reproduction Opportunity of more localized tasks:
» Program repair Prune a large part of the search space
* etc.

Which one is easier?

6/59

Chopped Symbolic Execution

main
Some code fragments are unrelated ‘

to certain tasks

* But symbolic execution can spend lots of
time unnecessarily analyzing them

Determining precisely if a part of the
code is unrelated is hard

* Often, most computation in a code
fragment is unrelated, but not all

target

7/59

Chopped Symbolic Execution

IDEA:
1) Guess unrelated code fragments (manually or via lightweight analysis)

2) Speculatively skip these code fragments
3) If their side effects are ever needed, execute relevant skipped paths only

8/59

Chopped Symbolic Execution [Note that in general, we

need to use a pointer alias
analysis to compute the
ref/mod sets.

int j; // symbolic void main() {
int k; // symbolic 0); -
int x = @3 , : void f() {
int y = 0; CGf (>0 D if ik > 0)
else
targetl; if (> @)
} 1
else target2; e
: }

Ref(main) = {j, v} Mod(f) = {x, y}

9/59

Dependent Loads

int j; // symbolic
int k; // symbolic
int x = 0;
int y = 0;

void main() {

()s

if (3 > 0) {

G~

targetl;

~
~

}
else target2;

}

Dependent load

~
~

~
~

~

void f() {
it (k > 0)

X = 1;
else

it (3 > 0)

Ty = 1D

~

~MG else

=

}

10/59

Chopped Symbolic Execution

void main() {
= 10
if (3 > 9) {
if (y)
targetl;
}
else target2;

11/59

Taking Sna

Js

pshots

= %

¢ em

void main() {

——
if (7 > 0) {
it (y)
targetl;
}

else target2;

}

12/59

Taking Snapshots

j1k=*

void main() {

—>
if (7 > 9) {
I if (y)
v
‘\\ targetl;
Program counter: line 2 }
Stack = [main]
Path constraints: {} else target2;
Memory: {x=0,y=0, k=..} }

U)

13/59

Reaching Target — Ideal Case

void main() {
—5—

- if(J>0){

if (y)
targetl;

}
else target2;

}

14/59

Reaching Target — Ideal Case

void main() {

——
if (3 >0){
if (y)
targetl;
}
—-> else target2;

}

15/59

Reaching Target — Recovery Needed

dependent load /

void main() {

———
if (7 > 9) {

PEE>.

targetl;
}

else target2;

}

16/59

Recovery Process

create recovery state >O void main() {
ahhadibiitirif e -

—O—

— if (3 > 0) {

<o |

// targetl;
e }

else target2;
}

dependent load

17/59

Recovery Process

void f() {
it (k > 9)
X = 1;
else
it (3 > 9)
y = 1;
else
y = 0;

18/59

Static Slicing

— | void f() {
it (k > 9)
s // x =1;
P d
R else
P it (3 > 9)
// y = 1;
rem.ovc-;:.d.by PR else
static slicing y = 0;
}

19/59

Recovery Process

—> | void f() {
it (k > 9)
// x = 1;
else
it (3 > 9)
y = 1;
else
y = 9;

20/59

Recovery Process

void f() {
it (k > 9)
// x = 1;
else
it (3 > 9)
y = 1;
else
y = 9;

21/59

Recovery Process

void f() {
it (k > 9)
// x = 1;
else
it (3 > 9)
y = 1;
else
y = 9;

22/59

Recovery Process

void f() {
it (k > 9)
// x = 1;
else
it (3 > 9)
y = 1;
else
y = 9;

23/59

Recovery Process

void f() {
it (k > 9)
// x = 1;
else
it (3 > 9)
y = 1;
else
y = 9;

24/59

Recovery Process

k>0

void f() {
it (k > 9)
// x = 1;
else
it (3 > 9)
y = 1;
else
y = 9;

25/59

Recovery Process

k>0

void f() {
it (k > 9)
// x = 1;
else
it (3 > 9)
y = 1;
else
y = 9;

26/59

Recovery Process

k>0

void f() {
it (k > 9)
// x = 1;
else
it (3 > 9)
y = 1;
else
y = 9;

27/59

Recovery Process

void main() {
£0s
if (J > 0) {
if (y)
- targetl;
}
k<O k>0 else target2;

}

28/59

void maizii—i___,——,_—vvoid () { .

O3 i (k> 0) Execution Trees

if (3 >0) { x = 1;

1se
it (y) e
targetl; i > 0)
) y = 1;

} else

else target2; y = 0;
} }

Standard SE Chopped SE

29/59

Implementation: Chopper

Chopped Symbolic Execution for C code
* Implemented at the LLVM bitcode level

Symbolic execution based on KLEE [https://klee.github.io/]
Mod-ref analysis based on SVF [Yulei Sui and Jingling Xue, https://svf-tools.github.io/SVF/]

* we use a flow-insensitive, context-insensitive, field-sensitive analysis

Static slicing based on DG [Marek Chalupa, https://github.com/mchalupa/dg/]

SVF
KA, ___ | Mod-Ref
Symbolic : Analysis
- |
Execu-tlon : DG
Engine | .
| Static

o Slicing

30/59

Experiments

SECURITY VULNERABILITY REPRODUCTION

COVERAGE AUGMENTATION

PATCH TESTING

address = optimizer.optimizeExpr(address, true);
StatePair zeroPointer = fork(state, Expr::createIsZero(address), true);
if (zeroPointer.first) {
if (target)
bindLocal(target, *zeroPointer.first, Expr::createPointer(0));

if (zeroPointer.second) { // address != @
ExactResolutionList rl;
resolveExact(*zeroPointer.second, address, rl, "free");

for (Executor::ExactResolutionList::iterator it = rl.begin(),
ie = rl.end(); it != ie; ++it) {
const MemoryObject *mo = it->first.first;
if (mo->isLocal) {
terminateStateOnError(*it->second, "free of alloca", F
getAddressInfo(*it->second, ad
} else if (mo->isGlobal) {
terminateStateOnError(*it->second, "free of glob
getAddressInfo(*it->seco
} else {
it->second->addressSpace.unbindObject(mo)
if (target)
bindLocal(target, *it->second, Exp
}
}

}
}

void Executor::resolveExact(Exe

p = optimizer.optimizeExpr(p, tr
// XXX we may want to be capping
ResolutionList rl;

state.addressSpace.resolve(state, sol

ExecutionState *unbound = &state;
for (ResolutionList::iterator it = rl.begin(), ie = rl.end();
it = ie; ++it) {
ref<Expr> inBounds = EqExpr::create(p, it->first->getBaseExpr());

StatePair branches = fork(*unbound, inBounds, true);

if (branches.first)
results.push_back(std: :make_pair(*it, branches.first));

unbound = branches.second;
if (lunbound) // Fork failure
break;

31/59

Reproducing Security Vulnerabilities

Benchmark: GNU libtasnl

* ASN.1 protocol used in many networking and cryptographic applications, such as for public
key certificates and e-mail

* Considered 4 CVE security vulnerabilities, with a total of 6 vulnerable locations (out-of-
bounds accesses)

Goal:

* Starting from the CVE report, generate inputs that trigger out-of-bounds accesses at the
vulnerable locations

Methodology:
* Manually identified the irrelevant functions to skip
* Time limit 24 hours, memory limit 4 GB

32/59

Reproducing Security Vulnerabilities

160 TIMEOUT (24h) TIMEOUT (24h) OUT OF MEMORY

m KLEE W Chopper
140
[random path search]

120
100

80

60

4

2

R = _—] _ _—

CVE-2014-3467 (1) CVE-2014-3467 (2) CVE-2015-2806 CVE-2014-3467 (3) CVE-2015-3622 CVE-2012-1569

L L Over 43k recoveries!

No recoveries!

Minutes

o o

o

33/59

Effectiveness of Chopped Symbolic Execution

Choice of code to skip [ongoing work]
Task-specific, some scenarios are easier to automate than others
Can always make different guesses and try them in parallel

Precision of pointer analysis

Currently a single pointer analysis, in the beginning, where we compute all
mod/ref sets

IDEA: run pointer analysis on demand, just before skipping a function

34/59

Motivating Example

W 00 N & U1 A W N B

B R R R R
A W N R ©®

typedef struct { int d, *p; } obj_t;
void foo(obj t *o) {
if (o->p)
o->d = 7;

obj_t* objs[N];
for (int i = 0; i < N; i++)

objs[i] = calloc(...);

objs[@]->p = malloc(...);
foo(objs[1]);
if (objs[0]->d)

35/59

Imprecision of Pointer Analysis

W 00 N & U1 A W N B

B R R R R
A W N R ©®

typedef struct { int d, *p; } obj_t;
void foo(obj t *o0) {

if (o->p)
o->d = 7;

}
obj_t* objs[N]; A
for (int i = 0; 1 < N; i++)

objs[i] = calloc(...); B
objs[0]->p = malloc(...); C
foo(objs[1]);

if (objs[0]->d)

All objects allocated in the loop have
same allocation site

4

Cannot distinguish between
objs[0] and objs[1]

36/59

Imprecision of Pointer Analysis

W 00 N & U1 A W N B

B R R R R
A W N R ©®

typedef struct { int d, *p; } obj_t;
void foo(obj t *o0) {

if (o->p)
o->d = 7;

}
obj_t* objs[N]; A
for (int 1 = 0; i < N; i++)

objs[i] = calloc(...); B
objs[0]->p = malloc(...); C
foo(objs[1]);

if (objs[0]->d)

All objects allocated in the loop have
same allocation site

4

Cannot distinguish between
objs[0] and objs[1]

4

o->d may point to (B, 0)

37/59

Imprecision of Pointer Analysis

W 00 N & U1 A W N B

B R R R R
A W N R ©®

typedef struct { int d, *p; } obj_t;
void foo(obj t *o0) {

if (o->p)
o->d = 7;

}
obj_t* objs[N]; A
for (int 1 = 0; i < N; i++)

objs[i] = calloc(...); B
objs[0]->p = malloc(...); C
foo(objs[1]);

if (objs[0]->d)

All objects allocated in the loop have
same allocation site

4

Cannot distinguish between
objs[0] and objs[1]

4

o->d may point to (B, 0)

4

Mod(f) = {(B, 0)}

38/59

Unnecessary Recoveries

W 00 N & U1 A W N B

B R R R R
A W N R ©®

typedef struct { int d, *p; } obj_t;
void foo(obj t *o0) {

if (o->p)
o->d = 7;

}
obj_t* objs[N]; A
for (int i = 0; 1 < N; i++)

objs[i] = calloc(...); B
objs[0]->p = malloc(...); C
foo(objs[1]); Unnecessary recg

if (objs[0]->d)

All objects allocated in the loop have

overy!

same allocation site

4

Cannot distinguish between
objs[0] and objs[1]

4

o->d may point to (B, 0)

4

Mod(f) = {(B, 0)}
False dependency!

39/59

Past-Sensitive Pointer Analysis (PSPA)

* Run pointer analysis on-demand, not
ahead of time:
* From a specific symbolic state
* On a specific function, locally

* Distinguish between past and future:
* Objects that were already allocated
* Objects that might be allocated
during pointer analysis

typedef struct { int d, *p; } obj_t;
void foo(obj t *o) {
if (o->p)
o->d = 7;

}

obj_t* objs[N];
for (int i = 0; 1 < N; i++)

objs[i] = calloc(...);

objs[0]->p = malloc(...);
foo(objs[1]);
if (objs[0]->d)

40/59

Unique Allocation Sites

During symbolic execution:
* Allocated objects are associated with unique allocation sites

for (int i = 0; i < N; i++)

objs[i] = calloc(...); B

41/59

Unique Allocation Sites

During symbolic execution:
* Allocated objects are associated with unique allocation sites

for (int i = 0; i < N; i++)

objs[i] = calloc(...); B
objs[0]: " mo, —-—-+ By
objs[1]: 1 mo, (---» B

42/59

Past-Sensitive Pointer Analysis

When a symbolic state reaches a function call to be skipped:
 Compute a path-specific abstraction
e Run pointer analysis from the initial abstract state

void foo(obj t *o0) {
if (o->p)

o->d = 7;

objs[0]->p = malloc(...);
foo(objs[1]);

abstraction

N

-

_

N\ (initial) jnput
abstract [-------
J __state

symbolic
state

-

-

pointer
analysis

~

J

43/59

Initial Abstract State

Use current symbolic state to construct the initial abstract state:

* Traverse function parameters and global variables
* Translate to points-to graph

void foo(obj t *o0) {
if (o->p)

o->d = 7;

objs[0]->p = malloc(...);
foo(objs[1]);

abstraction

N

~

_

symbolic
state

~

J

abstract

(initial) ;

. State

-

-

pointer
analysis

~

J

44/59

Initial Abstract State

typedef struct { int d, *p; } obj_t;
void foo(obj _t *o0) {
if (o->p)

o->d = 7;

obj_t objs[N]; A
for (int i = 0; 1 < N; i++)

objs[i] = calloc(...); B

objs[0]->p = malloc(...); C
foo(objs[1]);

~—

formal }

parameter

—

symbolic

state

45/59

Initial Abstract State

typedef struct { int x, *p; } obj_t; —
void foo(obj t *o0) { 0O —» d p
if (o->p) symbolic
0->d = 7; '/ state
} null
obj_t objs[N]; A _
for (int i = 0; 1 < N; i++) [o)] [(Bl’ 1)] initial
bjs[i] = call cee)s B
RS | | — abstract
state
objs[0]->p = malloc(...); C [(Bl’ 0)] [null]
foo(objs[1]);

46/59

Initial Abstract State

Analyze foo from the initial abstract state:

void foo(obj _t *o0) {
if (o->p)

o->d = 7;

_ o J{@n]

[(Bl‘,' 0 | | ull]

—

initial
— abstract
state

—r

47/59

Initial Abstract State

Analyze foo from the initial abstract state:

—

void foo(obj _t *o0) {
| [0] [(31» 1)] initial
if (o->p)
, — abstract
0'>d - 7_, A 4 \ 4
} [(Bl, O)] [null] state

—r

No false positives!
No unnecessary recoveries!

48/59

Reusing Summaries

 Number of analyzed functions can be high

* Running pointer analysis from scratch is expensive
* Empirical observation

* |nitial abstract states are often isomorphic

49/59

Reusing Summaries

void foo(obj t *o) { initial abstract state mod-set
Lo J[an]
} — (4,00}
[(A,O)] [null]
foo(ol);
ﬁisomorphic
foo(02);

R

{(B,0)}

[(B,"O) ull

50/59

PSPA Impact

Compare Chopper with static vs past-sensitive pointer analysis for:
* Augmenting coverage
* Reducing recoveries

51/59

Augmenting Code Coverage

* Manually select skipped functions

* E.g., In libtiff, we skip logging functions
which create many redundant forks

e Run each configuration for 1h Lines covered (random path search)
e Measure lines covered 1200

1000

800
600
400
200

0

libosip libtasnl libtiff

H Static = PSPA
52/59

Augmenting Code Coverage: Reuse Impact

e Run additional configuration with
reuse disabled

Lines covered (random path search)
1200

1000

800
60
40
0 l

libosip libtasnl libtiff

o

o

o

o

m Static E No reuse H PSPA
53/59

Reducing Recoveries [no manual selection]

10%]
For each benchmark, Sps | ' ' ' '
. . PSpy C—
10 configurations of o] " - - :
10 randomly-skipped _ | IR = :
. o i i]
functions S 02| i :
o ! = m i
. L | _ : .
Runs of 10 minutes & .. [1 il |
. . 0 I i _ .
per configuration 3 | _ i
) mm - m - l
101 - “ “

libosip libtasnl libtiff

Skipping configurations

55/59

All-path Exploration [search mostly irrelevant]

Construct drivers for our benchmarks that ensure KLEE terminates in <1h
Skip the same functions as before

Run each configuration with a timeout of 1h

KLEE Static PSPA
libosip 33:10 Timeout 04:16
libtasnl 41:29 Timeout 02:12
libtiff 32:40 Timeout 10:02

Excessive number of recoveries

56/59

Summary

 Chopped Symbolic Execution enhanced with Past-Sensitive Pointer
Analysis can make it possible to skip code irrelevant to a certain task

* At a high-level, we conservatively compute the side effects of the skipped
code and if and only if the side effects are ever used, we start a recovery
process which goes back and executes missing paths in the skipped code

 Computing the side effects on demand via past-sensitive pointer analysis
can significantly reduce the size of the side effects (mod-sets) and thus the
number of unnecessary recoveries

e Preliminary results are promising, showing high gains compared to
standard symbolic execution for tasks such as bug reproduction and
coverage augmentation

57/59

(CSE 2018)

Chopped Symbolic Execution

David Trabish Andrea Mattavelli Noam Rinetzky Cristian Cadar
Tel Aviv University Imperial College London Tel Aviv University Imperial College London

Israel United Kingdom Israel United Kingdom
davivtra@post.tau.ac.il amattave@imperial.ac.uk maon@cs.tau.ac.il c.cadar@imperial.ac.uk

Prototypes are open source: https://srg.doc.1c.ac.uk/projects/

(ESECIFSE 2020)

Past-Sensitive Pointer Analysis for Symbolic Execution

David Trabish Timotej Kapus Noam Rinetzky Cristian Cadar
Tel Aviv University Imperial College London Tel Aviv University Imperial College London

Israel United Kingdom Israel United Kingdom
davivtra@post.tau.ac.il t. kapus@imperial.ac.uk maon(@cs.tau.ac.il c.cadar@imperial.ac.uk

58/59

Future Directions

 Skipping arbitrary code fragments
* Chopper can currently only skip functions
 What is the right unit of skipped code?

* Better integration with static pointer analysis
 What is the right underlying pointer analysis to use?
* What are the performance/precision trade-offs?

* In-depth exploration of scenarios that can benefit from chopping
* Coverage augmentation, bug reproduction, debugging, program repair, etc.

e Automatic way of selecting code to be skipped
* Ongoing work on patch testing

59/59

