Program Analysis for Safe and Secure
Software Evolution

Cristian Cadar

(@D sorTwARE RELIABILITY Imperial College
GROUP London

University of Stuttgart

Stuttgart, Germany

15 April 2025

By Fuzzypiggy, Wikipedia

uopuo-] abajjo9 jeuadw| @

1 SOFTWARE RELIABILITY
Imperial College et
LOndOn http://srg.doc.ic.ac.uk

Current and recent members

Anastasios Frank Busse Manuel Karine Even- Martin
Andronidis Carrasco Mendoza Nowack
Cristian -
Cadar

Jordy Ruiz Daniel Arindam Bachir Ahmed Zaki
Schemmel Sharma Bendrissou 3

@ University of Stuttgart / Sven Cichowicz

0'v A9 2D ‘BozisH uelnr Ag

l@‘ Updated software is available for this computer. Do you want
N to install it now?

~ Details of updates

Install or remove Download
& Other updates 195.3 MB
& Google Chrome 112.5 MB

> B @ Settings (14) 8.7 MB
'] Anopenand reliable container runtime 29.5 MB

[| C++interface to the Clang library 14.7 MB

£ Modular compiler and toolchain technologies, runtime li... 29.8 MB

] Tool to Format C/C++/Obj-C code 97 kB

AVAILABLE UPDATES

Microsoft Windows (38)

[8=| Security Update for Microsoft Windows (KB5044273)
ez U pdate for Microsoft Windows (KBE5044020)

[5=] Servicing Stack 10.0.19041.4950

[5=] Servicing Stack 10.0.19041.4892

[5=] Servicing Stack 10.0.19041.4769

[8=] Servicing Stack 10.0.19041.4585

[8=] Servicing Stack 10.0.19041.4467

[8=] Servicing Stack 10.0.19041.4351

[8=] Servicing Stack 10.0.19041.4289
Mozl Servicina Stack 10.0.19041 4163

macOS Sequoia 15.1 Upgrade Now

AN
)
Update All @ ﬁ 15.1 — 6.73 GB

.) macOS Sequoia introduces new features to help you be more productive and
c Microsoft PowerPoint Update creative on Mac. With the latest Continuity feature, iPhone Mirroring, you can
Yesterday access your entire iPhone on Mac. It's easy to tile windows to quickly create your
ideal workspace, and you can even see what you're about to share while presenting

- Bug fixes more

with Presenter preview. A big update to Safari includes Distraction Control, making
it easy to get things done while you browse the web. macOS Sequoia also brings

text effects and emoji Tapbacks to Messages, Maths Notes to Calculator, and so

much more.
Microsoft To Do

Yesterday Update

Some features may not be available in all regions or on all Apple devices.

For information on the security content of Apple software updates, please visit this
website: https://support.apple.com/100100

We fixed some bugs to improve the app

experience. more More Info

Evolving Software

« Poorly validated code changes often introduce bugs & vulnerabilities

« Some with catastrophic impact

Channel
File 291
Incident

Heartbleed Shellshock Stagefright Crowdstrike
(2014) (2014) (2016) (2024)

ISSTA 2014

ICST 2025

CovRiG: A Framework for the Analysis
of Code, Test, and Coverage Evolution
in Real Software

Paul Marinescu, Petr Hosek, Cristian Cadar
Department of Computing
Imperial College London, UK

{p.marinescu,p.hosek,c.cadar}@imperial.ac.uk

Code, Test, and Coverage Evolution in Mature
Software Systems: Changes over the Past Decade

Cristian Cadar
Imperial College London
London, United Kingdom
c.cadar@imperial.ac.uk

Thomas Bailey
Imperial College London
London, United Kingdom

thomas.bailey() @outlook.com

* 6 popular open-source systems
* Analysed 250 revisions per app

e Conclusion: LOTS of code added or
modified without being tested

A decade later: Have things changed?

APR -

Binutils -

Curl -

Git -

Lighttpd?2 -

Memcached -

Redis A

Vim -

ZeroMQ A

Data for Covrig paper (250 revisions)

3—-14 years of development/project
78 development years in total

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

APR

18000 A -
w
170001 +5K ELOC
16000 - (V)
o +41%
@ 15000 - =
14000 - __,..-’
13000 -
e
0 100 200 300 400
Revision
Git
110000 p
1050001 : 433K ELO
100000 4 +43%
§ 95000 -
* 900007 ”~
85000 - /
80000 - /
0 500 1000 1500 2000 2500
Revision
Redis
40000 4]
37500 { 4
350001 : 429K ELO?
32500
& 30000 - +130% -~
9 275001 P4
250001 ‘/
225004 :
20000 /
17500 4

0 500 1000 1500 2000 2500

Revision

Binutils
33000 - ;"
320001 p:
310001 /
o 300004 : .
(@] :
o 29000 -
28000 -
291 / +8K ELOC
26000 1 +32%
25000 - , : ,
0 500 1000 1500
Revision
Lighttpd2
27000 - ? .
2| +7-5KELOC _
25000 - :
+38%_f"‘?
L 24000 - :
3 s
I 23000 - -~
22000 -
21000 - —
20000 4o :
0 100 200 300
Revision
Vim
107500 -
105000 -
102500 -
100000 -
(@]
% 97500 A
95000 | +21K ELOC
92500 - +24%
90000 -
87500 4
0 500 1000 1500 2000 2500
Revision

Curl
32000
20001 +6,5K ELOC / |
30000
+26% ,
§ 29000 P
“ 28000 - - 7
27000 - -
26000
0 500 1000 1500 2000 2500
Revision
Memcached
12000 A ; g
11000 :
1000 | +8.5K ELOC~
9000 - +268%, »
Q 8000 A : .
7000 - ' /"‘"
6000 - 5
5000 / " o
4000 A VE
3000 i 1 1
0 200 400 600 800
Revision
ZeroMQ
7500 - P
00| +2.5K ELOC”
w -
o/ %
Les0] +48% .
S
u-l -
6000 - ”
~
5500 - -~ °
|
5000 | : '
0 100 200
Revision

ELOC/time

Code increases of
2.5K - 33K ELOC,
24% — 268%

APR Binutils Curl
100 100 - 100

+ Line Coverage + Line Coverage
® Branch Coverage % Branch Coverage

+ Line Coverage
% Branch Coverage

+3.3pp

80

80 80 -
R +3.7pp) +13.1pp = _—
S 2 2 L :
g 60 S PR -éj'—' 60 1 '-g" 60 7 r! — ;‘
S I e T B 2 o)
Coverage WE
o . . O o

x x e’

#

E I t o 20) 20 ﬁ 201 * .
VOIUtIion
0 100 200 300 400 0 500 1000 1500 0 500 1000 1500 2000 2500
Revision Revision Revision
Git Lighttpd2 Memcached
100 T 100 100 T
E % Branch Coverage % Bjanch Covarage 1 '8pp X Branch Coverage
: : +1.
. . 80 T - = %1 +16.4pp ol P T
Line coverage increases by 2.8 — 22.7pp [T L | L [Tt
It decreases in Redis by 9.2pp == S 8 ;
5 40 +28pp : é 40 | = - é 40
20 T 20 {1 20- -
c ; .
5/9 projects have i N L B R
0 500 1000 1500 2000 2500 0 100 200 300 0 200 400 600 800
under 50% branch coverage
Redis Vim ZeroMQ
100 . 100 - 100
. + Line Coverage + Line Coverage + Line Coverage
. ® Branch Coverage * Branch Coverage ¥ Branch Coverage
s0] : “ 80 "‘ 80 1 +10.7pp 3
. -9.2pp +22.7pp PSS
g GO-M. % 60-/ g 60 A s T
<) N—-ﬂ & x| B :
e - PR - | 2 :
$ g0 =+ LW S 40 S 40- i, e ™
o Q H + * (] o] .
m=mm= | ine coverage SRS S =
x: % | :
201 * o 201 . 20 -
mmmm=== Branch coverage . x . . . i
0 SCI)O IOIOO 15I00 20I00 2500 0 S(IJO 101’)0 15ICIO 20b0 2500 0 160 260 10
Revision Revision Revision

Patch
Coverage

Percentage of ELOC in
a patch covered by the
test suite

Low bar: reaching the patch
does not mean testing it

Bl 100%

B (75%, 100%)
3 (50%, 75%]
B (25%, 50%]
B (0%, 25%]
B 0%

100 -

80 A

60 A

20 4

Patch Coverage across projects (revs that introduce executable lines)

APR Binutils Curl Git Lighttpd2 Memc. Redis Vim ZeroMQ H

Can Program Analysis Tools Help?

gc\
Clang Sta;:;nalyzer 0 po @ AFL++
KLEE

FINDING BUGS WITH STYLE

h EVa=SUITE
C h i Dafnyﬁ'

Clang Static Analyzer A F L++

Designed for whole program testing

Whole-Program Testing
l.e. Testing from Scratch

Expensive and wasteful

* Lots of wasteful repetition across versions

* New bugs are often missed with patch sometimes not even reached

* Same bugs found over and over again, with the need for deduplication
* Bugs reported with significant delay: expensive context switching

Developers need feedback within minutes of patch submission
Quick directed testing campaigns required in a ClI/CD context

Testing Evolving Software

Reuse testing results

of previous versions

Direct testing effort

toward the changes

19

Greybox Fuzzing:
Coverage-quided Mutation-based Fuzzing

Input Queue

Img
Pick input
<a><b ICK Inpu Mutate <x><y></z>a<ly>

<X><y></x><[y>
23F@fe@#S$Fce ‘ <x><y></x></y> ‘ <x></y><x></y>

<p>AbC <X><ww></x><[y>

20

Greybox Fuzzing:
Coverage-quided Mutation-based Fuzzing

Input Queue

Img
Pick input
<a><b ICK Inpu Mutate <x><y></z>a<ly>

;;‘;gf:g:;{: ‘ <x><y></x><[y> ‘ <x><ly><x><ly>
<p>AbC <X><ww></x><[y>
<x><y></z>a<ly>

If new coverage, add to queue

21

AFLGo:
State-of-the-Art Directed Greybox Fuzzing

* AFLGo is a pioneering tool for directed greybox fuzzing
* |t extends traditional fuzzing by targeting specific code areas
* Computes distance estimates to prioritize inputs close to the target

v

v

l
.~ - * Butdistance computation can be expensive
= . Fuzzing budget may be exhausted before any fuzzing is done

=

lr\‘

Directed Greybox Fuzzing

Marcel Bohme Van-Thuan Pham*

National University of Singapore, Singapore National University of Singapore, Singapore
marcel.boehme@acm.org thuanpv@comp.nus.edu.sg
Manh-Dung Nguyen Abhik Roychoudhury

National University of Singapore, Singapore National University of Singapore, Singapore

dungnguy@comp.nus.edu.sg abhik@comp.nus.edu.sg

PaZZER = Patch + Fuzzer

* Designed to be practical for short CI/CD runs I M P E R I A L

* Aims to find a sweet spot between time spent in
distance computation and effectiveness

* Relies on less precise but quick distance I
estimates (using only the call graph) o g e

* Computes distances incrementally
(LPA*, Anytime-D¥*)

24

Time-to-Exposure (TTE)
Pazzer Case StUdy AFLGo

Distance Fuzzing Total
34 min 4 min 38 min

ObjDump (>0.5 million LOC)
CVE-2018-8392 Pazzer (non-incremental)

Distance Fuzzing Total
<3 min <5min 7 min

Journal Special Issue on Fuzzing:
What about Preregistration?

Pazzer (incremental)
Distance Fuzzing Total

co-authored by Marcel Bohme (Monash University), Laszlo Szekeres (Google),

14 sec <5 min 5 min

Baishakhi Ray (Columbia University), Cristian Cadar (Imperial College London)

Effective Fuzzing within CI/CD Pipelines (Registered Report)

Arindam Sharma Cristian Cadar Jonathan Metzman
Imperial College London Imperial College London Google
United Kingdom United Kingdom USA
arindam.sharma@imperial.ac.uk c.cadar@imperial.ac.uk metzman@google.com

25

Dynamic Symbolic Execution (DSE)

Program analysis technique for automatically exploring paths through a program

Applications in:
* Bug finding
* Test generation

Vulnerability detection and
exploitation

Equivalence checking
Debugging

Program repair
Bounded verification
etc. etc.

Dynamic Symbolic Execution

int foo(unsigned x) {
intr=x+1;

if (x> 10)
r=2%*r;

if (x>H)
r=r-24,

return x / r;

X

r=x+1

A 4

return x /r

Infeasible

x=11

then/\ else
>10

>10 \X/

r=2%r
then else
X>5 X
r=r-24

r=r-24

A 4

return x /r

[x =237]

Y

y

then else
>
<5 X>5 K23 x<5

x<10

A 4

return x /r

<>

[x = UINT_MAX?]

Dynamic Symbolic Execution

Key advantages: Key challenges:
e Systematically explores e Efficiently solving lots of
unique control-flow paths constraints
* Produces test cases e Path explosion, particularly
" in the presence of loops
* No false positives

* Reasons about all possible
values on each explored path

* Per-path verification

V4 https://klee-se.org/
https://github.com/klee/

Popular dynamic symbolic executor primarily developed
and maintained at Imperial

Works at the LLVM level: C (full support), C++, Rust

Active user and developer base:
* 100+ contributors to KLEE and its subprojects

400+ mailing list subscribers
600+ forks

2500+ stars
400+ participants across the first four KLEE workshops

L%

KILEE

FINDING BUGS WITH STYLE

32

KLEE WorkShOp 2024 Program ~ Attending Call for Contributions ~ Organisation Sponsors Series ~ W

4th International KLEE Workshop on Symbolic Execution
15-16 April 2024 e Lisbon, Portugal ® Co-located with ICSE 2024

/ https://klee-se.org/
https://github.com/klee/

Academic impact: Growing impact in industry:
* ACM SIGOPS Hall of Fame Award e Baidu: [KLEE 2018]

and ACM CCS Testof Time Award ., g\ iitsu: [PPoPP 2012], [CAV 2013],
* Over 4,500 citations to original KLEE [1CST 20151, [IEEE Software 2017],

paper (OSDI 2008) [KLEE 2018]

* From many different research * Google: [2x KLEE 2021]
communities: testing, verification, | Hitachi: [CPSNA 2014], [ISPA 2015],
systems, software engineering, [EUC 2016], [KLEE 2021]

PL, security, etc.

M diff svst s KLEE * Intel: [WOOQOT 2015]
* Many different systems using L .
AEG, Angelix , BugRedux , Cloud9, NASA Ames: [NFM 2014]
GKLEE, KleeNet, KLEE-UC, S2E, « Samsung: 2 x [KLEE 2018], [KLEE 2024]

SemrFix, etc. * Trail of Bits [blog.trailofbits.com/]
* etc.

P

I<LOVO

...eats your bugs!

35

DSE for Evolving Software
Direct DSE Effort Toward Testing the Change

1. Use distance estimates to favour paths close to the change
2. Prioritise paths that explore the changes in behaviour

37

KLEE for Evolving Software

KATCH = KLEE + PATCH

O » Use distance estimates to the patch
guide path exploration

» Use constraint and program analysis to
smartly backtrack, when exploration
cannot make progress toward the patch

KATCH: High-Coverage Testing of Software Patches

Paul Dan Marinescu Cristian Cadar
Department of Computing Department of Computing
Imperial College London, UK Imperial College London, UK

p.marinescu@imperial.ac.uk c.cadar@imperial.ac.uk

Developers’' Patch Testing

Uncovered

FindUtils:

125 patches

(o)
over 26m 63%

100%

Uncovered

DiffUtils:

175 patches
over 30m

0% 35%

100%

Uncovered

BinUtils:

181 patches

0,
over 16m 0% 18%

Patch Coverage (basic block level)

100%

44

KATCH Patch Testing

FindUtils:

125 patches
over 26m

DiffUtils:

175 patches
over 30m

BinUtils:

181 patches
over 16m

0% 63% 87% 100%

0% 35% 73% 100%
. +K ' Uncovered

0% 18% 33% 100%

14 distinct crash bugs
(12 still present and fixed, 10 related to patches)

—

10min/BB

10min/BB

15min/BB

45

Reaching the Patch is Not Sufficient

Consider the patch:

Previous Current
if (x 5 2 == 0) ‘ if (x $ 3 == 0)
No further uses of x No further uses of x
? ? ? ?

@ @) @

64

Reaching the Patch is Not Sufficient

Consider the patch:

Previous

Full branch coverage in the current version

Current

1f (x % 3 ==

)

No further uses of x

65

Reaching the Patch is Not Sufficient

Consider the patch:

Previous Current
1f (x % 2 == 0) ‘ if (x $ 3 ==
No further uses of x No further uses of x

?

However, totally useless for testing the patch!

66

Reaching the Patch is Not Sufficient

Consider the patch:

Previous Current
if (x % == () ' if (x $ 3 == 0)
No further uses of x No further uses of x

previous = then previous =2 else
current = else current -2 then

67

Shadow Symbolic Execution for Testing Software Patches Symbolic Execution

on Both Versions

TOMASZ KUCHTA, HRISTINA PALIKAREVA, and CRISTIAN CADAR,
Concurrently

Imperial College London

Previous Current
1f (x % 2 == 0) ‘ 1f (x $ 3 == 0)
M

(X% 2=0)A(x%3=0) (Xx%220)A(x%3=0)

68

Shadow Symbolic Execution

* Can prune large parts of the search space, for which the two versions
behave 1dentically

* Provides the ability to simplify path constraints

* Is memory-efficient by sharing large parts of the symbolic constraints

* Does not execute unchanged computations twice

Case Study: cut

(file is “a:b:c")

Input Old New

cut -c1-3,8- -output-d=: file abc abc + buffer overflow
(file is "abcdefg")

cut -c1-7 8- --output-d=: file abcdef abcdef + buffer

file contains "abcdefg” overflow

cut -b0-2,2- --output-d=: file abc signal abort

file contains “abc”

cut -s -d: -fO- file \n:il \n\n

(file is "“:::\n:1")

cut -d: -f1,0- file a:b:c a

Need for specifications!

Test cases as documentation!

Challenge: Joining the Two Versions

Old

if (x % 2 == 0)

n‘ .(x 7 shadow_expr(2, 3) == 0)

New

If .(X % 3 == O)

71

Product Programs

Used to reason about hyperproperties in a security context

* Particularly non-interference
* Product program of program P with itself

G. Barthe, J. M. Crespo, C. Kunz, “Relational verification using product programs”
Proc. of the 17th International Symposium on Formal Methods (FM’11)

We use them as a mechanism for merging multiple program versions
into a single program

Example

Previous version

2
I

N
I

Current version

y - 1; X
x / 4; 4

y - 1;
X >> 2;

Product program

X prev = y prev - 1;
x =y - 1;

z prev = x prev / 4;
Z =X >> 2;

73

P?: Reasoning about Patches via Product Programs

ARINDAM SHARMA, Imperial College London, United Kingdom
DANIEL SCHEMMEL, Imperial College London, United Kingdom

CRISTIAN CADAR, Imperial College London, United Kingdom P 3

* Designed P3 to generate product programs for a %
real-world C code and different program versions

 P3 can transform ANY program analyser into a
differential program analyser

=N
KLEE

FINDING BUGS WITH STYLE

* We were able to find the all the bugs found via
shadow symbolic execution using P3 + KLEE KLEE AFL++

* We found different bugs using P3 + AFL++

74

Patch Specifications via Product Programs

Cristian Cadar Daniel Schemmel Arindam Sharma
Department of Computing Department of Computing Department of Computing
Imperial College London Imperial College London Imperial College London
London, UK London, UK London, UK
c.cadar@imperial.ac.uk d.schemmel @imperial.ac.uk arindam.sharma@imperial.ac.uk

X prev = y prev - 1;
x=y - 1;

Specifications encoding

z prev = x prev / 4;
cross-patch properties

Z =X >> 2;

assert(z == z prev);

75

Preliminary Experience

* Wrote patch specs for several patches from P
CoreBench: collection of complex real-world
patches [Béhme and Roychoudhury] %
* We used P3 with AFL++ and KLEE to look for
violations of the patch specs KLEE

FINDING BUGS WITH STYLE

KLEE AFL++

76

Patch in Is

static char * make_link_name (char const *)
char const *);
make_link_name(” "o " = "

“Do not hard-code ’/’. Use IS ABSOLUTE_FILE_NAME and dir_len
instead. Use stpcpy/stpncpy in place of strncpy/strcpy.”

Patch in Is

if (*linkname =="/")

P3 with both AFL++
and KLEE found a
spec violation:

name = /a
linkname = x

Bug made itinto a

return xstrdup (linkname);

char const *linkbuf = strrchr (name, '/’);

if (linkbuf == NULL)

return xstrdup (linkname);

size_t bufsiz = linkbuf - name + 1;

char *p = xmalloc (bufsiz + strlen (linkname) + 1);

strncpy (p, name, bufsiz);

strcpy (p + bufsiz, linkname);

return p;

release, was reported
by a user and fixed

if (IS_ABSOLUTE_FILE_NAME (linkname))
return xstrdup (linkname);
size_t prefix_len = dir_len (name);
if (prefix_len == 0)
return xstrdup (linkname);
char *p = xmalloc (prefix_len + 1 + strlen (linkname) + 1);

stpcpy (stpncpy (p, name, prefix_len + 1), linkname);

return p;

assert(strcmp(p, p_prev) ==0);

78

Patch in Is

P3 with both AFL++
and KLEE found

new spec violation:
name = /x//y

if (*linkname =="/") Finknames=ia

return xstrdup (linkname);
char const *linkbuf = strrchr (name, '/’);
if (linkbuf == NULL)
return xstrdup (linkname);
size_t bufsiz = linkbuf - name + 1;
char *p = xmalloc (bufsiz + strlen (linkname) + 1);
strncpy (p, name, bufsiz);
strcpy (p + bufsiz, linkname);

return p;

if (IS_ABSOLUTE_FILE_NAME (linkname))
return xstrdup (linkname);
size_t prefix_len =dir_len (name);
if (prefix_len == 0)
return xstrdup (linkname);
char *p = xmalloc (prefix_len + 1 + strlen (linkname) + 1);
stpcpy (stpncpy (p, name, prefix_len + 1), linkname);

if (! ISSLASH (name[prefix_len - 1])) ++prefix_len;
stpcpy (stpncpy (p, name, prefix_len), linkname);

return p;

Code patch to
assert(strcmp(p, p_prev) ==0); fix reported bug

79

Patch in Is

if (*linkname =="/")

No more spec
violations found
if path-based
equality is used

return xstrdup (linkname);

char const *linkbuf = strrchr (name, '/’);

if (linkbuf == NULL)

return xstrdup (linkname);

size_t bufsiz = linkbuf - name + 1;

char *p = xmalloc (bufsiz + strlen (linkname) + 1);

strncpy (p, name, bufsiz);
strcpy (p + bufsiz, linkname);

return p;

if (IS_ABSOLUTE_FILE_NAME (linkname))
return xstrdup (linkname);

size_t prefix_len = dir_len (name);

if (prefix_len == 0)

return xstrdup (linkname);

char *p = xmalloc (prefix_len + 1 + strlen (linkname) + 1);

stpcpy (stpncpy (p, name, prefix_len + 1), linkname);

if (1 ISSLASH (name[prefix_len - 1])) ++prefix_len;
stpcpy (stpncpy (p, name, prefix_len), linkname);

return p;

assert(patheqg(p, p_prev)==0);

80

Additional Directions

* Pruning paths that are unrelated to the change
[Trabish et al, ICSE 2018], [Trabish et al, ESEC/FSE 2020]

* Generating test drivers to start close to the change using program
analysis and LLMs
[Zaki et al, SANER 2025], ongoing work

Program Analysis for Safe and Secure
Software Evolution

Cristian Cadar

@ sorTwaRE ReLiaBiLITY Imperial College

GROUP London

Funded by % J ;'5*:&‘..":;:

[

University of Stuttgart
Stuttgart, Germany

15 April 2025

Evolving Software

« Poorly validated code changes often introduce bugs & vulnerabilities

+ Some with catastrophic impact

Heartbleed
(2014)

Shellshock
(2014)

Stagefright
(2016)

Channel
File 291
Incident

Crowdstrike
(2024)

Patch Coverage across projects (revs that introduce executable lines)

Patch
Coverage

= 100%
E (75%, 100%)
=3 (50%, 75%]
B (25%, 50%]
(0%, 25%)
- 0%

APR Binutils Curl

Git Lighttpd2 Memc. Redis Vim ZeroMQ

Testing Evolving Software

Reuse testing results Direct testing effort

of previous versions toward the changes

PaZZER = Patch + Fuzzer

* Designed to be practical for short CI/CD runs

* Aims to find a sweet spot between time spent in
distance computation and effectiveness

* Relies on less precise but quick distance
estimates (using only the call graph)

* Computes distances incrementally
(LPA*, Anytime-D*)

IMPERIAL

Google

KATCH Patch Testing

Findutils: [xarca[un || 1ominee
125 patches

over 26m 0% 63% 87% 100%
DiffUtils: +KATCH iUncovered ﬁ 10min/BB
175 patches o, 35% 73% 100%

over 30m
BinUtils: - +K g Uncovered ﬁ 15min/BB
181 patches

over 16m 18% 33% 100%

14 distinct crash bugs
(12 still present and fixed, 10 related to patches)

44

Reaching the Patch is Not Sufficient

Consider the patch:

Old New
if (x & 2 == 0) _ if (x % 3 == 0)
No further uses of x No further uses of x

new - else

new = then

P3: Reasoning about Patches via Product Programs

ARINDAM SHARMA, Imperial College London, United Kingdom
DANIEL SCHEMMEL, Imperial College London, United Kingdom
CRISTIAN CADAR, Imperial College London, United Kingdom

* Designed P3 to generate product programs for
real-world C code and different program versions

* P3 can transform ANY program analyser into a
differential program analyser

* We were able to find the all the bugs found via
shadow symbolic execution using P + KLEE

» We found different bugs using P3 + AFL++

AFL++

72

Patch Specifications via Product Programs

Cristian Cadar
Department of Computing
Imperial College London

Daniel Schemmel
Department of Computing
Imperial College London

Arindam Sharma
Department of Computing
Imiperial College London
London, UK London, UK London, UK
c.cadar@imperial ac.uk d Lac.uk arindam i ac.uk

X_prev = y prev - 1;
x=y - 1;

Specifications encoding

z_prev = x_prev / 4;
cross-patch properties

z =x > 2;

assert(z == z_prev);

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6: Evolving Software
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12: Can Program Analysis Tools Help?
	Slide 13
	Slide 14
	Slide 18: Whole-Program Testing i.e. Testing from Scratch
	Slide 19: Testing Evolving Software
	Slide 20: Greybox Fuzzing: Coverage-guided Mutation-based Fuzzing
	Slide 21: Greybox Fuzzing: Coverage-guided Mutation-based Fuzzing
	Slide 22: AFLGo: State-of-the-Art Directed Greybox Fuzzing
	Slide 24: PaZZER = Patch + Fuzzer
	Slide 25: Pazzer Case Study
	Slide 27: Dynamic Symbolic Execution (DSE)
	Slide 29: Dynamic Symbolic Execution
	Slide 30: Dynamic Symbolic Execution
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 37: DSE for Evolving Software Direct DSE Effort Toward Testing the Change
	Slide 38: KLEE for Evolving Software
	Slide 44: Developers’ Patch Testing
	Slide 45: KATCH Patch Testing
	Slide 64: Reaching the Patch is Not Sufficient
	Slide 65: Reaching the Patch is Not Sufficient
	Slide 66: Reaching the Patch is Not Sufficient
	Slide 67: Reaching the Patch is Not Sufficient
	Slide 68: Symbolic Execution on Both Versions Concurrently
	Slide 69: Shadow Symbolic Execution
	Slide 70: Case Study: cut
	Slide 71: Challenge: Joining the Two Versions
	Slide 72: Product Programs
	Slide 73: Example
	Slide 74
	Slide 75
	Slide 76: Preliminary Experience
	Slide 77: Patch in ls
	Slide 78: Patch in ls
	Slide 79: Patch in ls
	Slide 80: Patch in ls
	Slide 81: Additional Directions
	Slide 94

