
Code, Test, and Coverage Evolution in Mature
Software Systems: Changes over the Past Decade

Thomas Bailey Cristian Cadar

ICST 2025
4 April 2025
Napoli, Italy

Funded by

How Are Mature C/C++ Software Projects,
Tested By Developers?

ISSTA 2014

• 6 popular C/C++ open-source projects

• Analysed 250 revisions per project

• Conclusion: LOTS of code added or
modified without being tested

Software engineering has
seen many advances

A Decade Later

How has software testing
of mature C/C++ OSS

projects changed?

2

3

Data for Covrig paper (250 revisions)

Extended the 250 revisions/project to the most
recent revision, up to a max of 2,500 revisions

3–14 years of development/project
78 development years in total

Code increases of
2.5K – 33K ELOC,

24% – 268%

ELOC/time

+5K ELOC

+8K ELOC

+6.5K ELOC

+33K ELOC +7.5K ELOC +8.5K ELOC

+22K ELOC

+21K ELOC

+2.5K ELOC

+41%

+32%

+26%

+43% +38% +268%

+130%

+24%

+48%

4*Rounded to the closest 0.5K

6/9 projects add
MORE TLOC than ELOC

TLOC/time

5

Vim and Binutils
experience a step change

in their testing efforts

+7.5K TLOC
+15.5K TLOC

+23K TLOC

+57K TLOC +2.5K TLOC +8.5K TLOC

+7K TLOC +25K TLOC +3K TLOC

+51%
+335%

+93%

+56% +286% +576%

+98% +329% +428%

*Rounded to the closest 0.5K

CI Adoption: 7/9 projects now use a CI system

2013 2014 2015 2016 2017 2018 2019 2020 2021

ZeroMQ

Curl APR
Vim

Git Memcached Redis

APR Binutils Curl Git Lighttpd MemC. Redis Vim ZeroMQ

First
CIs

Travis Travis
Zuul

Travis Travis Circle Travis Travis

Current
CIs

GitHub GitHub
Circle
Cirrus

AppVeyor
Azure

GitHub
Azure

GitHub GitHub GitHub
Cirrus

AppVeyor

Travis

6

2013 2014 2015 2016 2017 2018 2019 2020 2021

ZeroMQ

Curl APR
Vim

Git Memcached Redis

APR Binutils Curl Git Lighttpd MemC. Redis Vim ZeroMQ

First
CIs

Travis Travis
Zuul

Travis Travis Circle Travis Travis

Current
CIs

GitHub GitHub
Circle
Cirrus

AppVeyor
Azure

GitHub
Azure

GitHub GitHub GitHub
Cirrus

AppVeyor

Travis

7

CI Adoption: 7/9 projects now use a CI system

Only 2/9 projects explicitly track coverage:

• Curl and Vim, both via Coveralls

Challenge: distinguishing b/w problematic and superficial coverage drops

Coverage Tracking

“The coveralls service and test coverage numbers are just too unreliable.
Removed badge from README.md as well.” (Curl, 2019)

“Problem: Codecov reports every little coverage drop.
Solution: Tolerate a 0.05% drop.” (Vim, 2021)

Vim: configured their CI to tolerate coverage decreases of < 0.05%

Curl: dropped Coveralls coverage tracking due to this issue

8

Google’s OSS-Fuzz
• Fuzzing platform for OSS
• Found 36K+ bugs

in 1K+ C/C++ projects

Fuzzing Adoption
Line

Coverage
Fuzz

Targets

APR

Binutils 32.2% 26

Curl 21.8% 17

Git 10.8% 10

Lighttpd2 34.7% 1

Memcached

Redis

Vim

ZeroMQ

https://introspector.oss-fuzz.com/, March 2024

9

https://introspector.oss-fuzz.com/

10

Line coverage increases by 2.8 – 22.7pp
It decreases in Redis by 9.2pp

Coverage
Evolution

+3.7pp +13.1pp
+3.3pp

+2.8pp

+16.4pp
+1.8pp

-9.2pp +22.7pp
+10.7pp

Line coverage

Branch coverage
10

5/9 projects have
under 50% branch coverage

Evolving Software

• Software evolves on a constant basis

• Poorly validated changes (patches) can have a significant impact

• Sometimes catastrophic:

Heartbleed

(2014)
Shellshock

(2014)

Stagefright

(2016)

Crowdstrike

(2024)

Channel
File 291
Incident

11

12

Patch
Coverage

APR Binutils Curl Git Lighttpd2 Memc. Redis Vim ZeroMQ
12

Percentage of ELOC in

a patch covered by the

test suite

Low bar: reaching the patch
does not mean testing it

Covrig
[ISSTA 2024]

This study
[ICST 2025]

APR - 0.5%

Binutils 0% 18.6%

Curl - 4.1%

Git 0.4% 1.7%

Lighttpd2 0.4% 2.7%

Memcached 8.4% 10.9%

Redis 6.4% 59.8%

Vim - 2.0%

ZeroMQ 12.8% 17.8%

13

Number of flaky revisions has
significantly increased in the
last decade, despite research
progress in flakiness detection.

Some flaky tests lasts for many
revisions until fixed

Flaky
Revisions

Developers more aware of the importance of testing:
• Most projects now use a CI system
• A few projects track coverage and use fuzzing
• In 6/9 projects, developers have added more TLOC than ELOC
• Overall coverage increases over time in all projects but one

But challenges remain:
• Better standards & solutions to facilitate switching CI, fuzzing, and analysis providers
• We need ways to more accurately track and reason about coverage changes
• We need better automatic techniques for fuzz target generation
• We still need better test generation techniques

• 5/9 projects still have under 50% branch coverage

• We need targeted testing techniques for code changes
• The number of untested and poorly tested patches is really high

• We should understand why flakiness has increased over time
• And how to bridge the gap between research and practice

Conclusion
&

Actionable
Insights

14

https://srg.doc.ic.ac.uk/p

rojects/covrig/

https://srg.doc.ic.ac.uk/projects/covrig/
https://srg.doc.ic.ac.uk/projects/covrig/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6: CI Adoption: 7/9 projects now use a CI system
	Slide 7: CI Adoption: 7/9 projects now use a CI system
	Slide 8: Coverage Tracking
	Slide 9: Fuzzing Adoption
	Slide 10
	Slide 11: Evolving Software
	Slide 12
	Slide 13: Flaky Revisions
	Slide 14: Conclusion & Actionable Insights

