Three Colours of Fuzzing:
Reflections and Open Challenges

Cristian Cadar

«@D sorTwWARE RELIABILITY Imperial College

GROUP London

Image credits: aitoff, jackmac34, Gam-
Ol, JessBaileyDesign, No-longer-here,
Walkerssk @ Pixabay, Powerpoint

Keynote @ FUZZING 2023
Seattle, USA, 17 July 2023

Execution Generated Test Cases: How to Make
Systems Code Crash Itself

Cristian Cadar and Dawson Engler*

Computer Systems Laboratory,

Stanford University,
Stanford, CA 94305, U.S.A

Abstract. This paper presents a technique that uses code to automat-
ically generate its own test cases at run-time by using a combination of
symbolic and concrete (i.e., regular) execution. The input values to a

2005

Running Symbolic Execution Forever 2020

Frank Busse Martin Nowack Cristian Cadar
Imperial College London Imperial College London Imperial College London
United Kingdom United Kingdom United Kingdom
f.busse@imperial.ac.uk m.nowack@imperial.ac.uk c.cadar@imperial.ac.uk

SnapFuzz: High-Throughput Fuzzing of Network Applications

Anastasios Andronidis Cristian Cadar

Imperial College London Imperial College London

London, United Kingdom London, United Kingdom
a.andronidis@imperial.ac.uk c.cadar@imperial.ac.uk 2022

Grammar Mutation for Testing Input Parsers

: 2023
(Registered Report)
Bachir Bendrissou Cristian Cadar Alastair F. Donaldson
Imperial College London Imperial College London Imperial College London
London, United Kingdom London, United Kingdom London, United Kingdom

b.bendrissou@imperial.ac.uk c.cadar@imperial.ac.uk alastair.donaldson@imperial.ac.uk

KLEE

Open-source tool widely used in both research and industry

Microsoft SAGE
Found one-third of file fuzzing bugs during development of Windows 7

AFL
Revolutionary greybox fuzzer with a long list of trophies

Google’s OSS-Fuzz
Fuzzing platform for OSS, found 8K+ vulnerabilities and 28K+ bugs in 850+ projects

Csmith and EMI
Compiler fuzzers, discovered hundreds of bugs in mature compilers like GCC & LLVM

SQLancer
DBMS fuzzer, found 400+ bugs in popular DBMS like SQLite & PostgreSQL

CovVRIG: A Framework for the Analysis
of Code, Test, and Coverage Evolution
in Real Software

Paul Marinescu, Petr Hosek, Cristian Cadar
Department of Computing
Imperial College London, UK

{p.marinescu,p.hosek,c.cadar}@imperial.ac.uk

ISSTA 2014

* 6 popular open-source systems
* Analysed 250 revisions per app

e Conclusion: LOTS of code added or
modified without being tested

A decade later: Have things changed?
Tom Bailey, C.C., WiP

APR -

Binutils -

Curl A

Git -

Lighttpd2 -

Memcached -

Redis A

Vim A

ZeroMQ A

Legacy data for original Covrig paper (250 commits)

3—-14 years of development/project
200-1900 code revisions/project

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

APR

18000 - =
79901 45K LOC
16000 - [

g +41%
@ 15000 - e
14000 - _,...4-’
13000 -
—aat
0 100 200 300 400
Revision
Git
110000 d
1050001 | 433K LOC
100000 - +43%
: 0
§ 95000
“ 900001 ”
85000 /
80000 /
0 500 1000 1500 2000 2500
Revision
Redis
40000 A "
375004 /
B0 422K LOC
32500 J
& 30000 +130% -
927500 7
250001 : /
22500 -
20000 /
17500 4

0 500 1000 1500 2000 2500

Revision

Binutils
-
33000 /
32000 1 y:
31000 - /f
© 30000 - p
O
o 29000
28000 1
S5O0 +8K LOC
26000 17 +32%
25000 - i i .
0 500 1000 1500
Revision
Lighttpd2
27000 1 o
26000{ +7.5K LOCJ...
25000 1 :
+38%_f‘—;‘
L 24000 - :
S F
© 23000 - -~
22000 1
21000 1 -
20000 4 :
0 100 200 300
Revision
Vim
107500 -
105000 -
102500 -
100000 -
O
S 97500 A
92500 1 +24%
90000 1
87500
0 500 1000 1500 2000 2500

Revision

Curl
32000
2001 46,5K LOC /|
30000 -
+26%
Q 29000 A 4
S ~
* 28000 - 28 7
27000 - e
26000 -
0 500 1000 1500 2000 2500
Revision
Memcached
12000 - - poee
11000 A :
4
o0 | +8.5K LOC
9000 - +268% , o
g 80001 : .
o 7000 - i
6000 - :
5000 - , o
4000 - VE
3000 - i S : :
0 200 400 600 800
Revision
ZeroMQ
7500 - =
+2.5K LOC,”
7000 A . ¢
A\ .
o/ %
o 6500 - +48% .
% -
6000 - .
s,
5500 - ~ *
:,u-v—-'
5000 A , .
0 100 200
Revision

ELOC/time

Code increases of
2.5K - 33K LOC,
24% - 268%

Coverage
Evolution

Coverage increases by 2.8 — 22.7pp
It decreases in Redis by 9.2pp

= | ine coverage

== Branch coverage

100
+ Line Coverage
x Branch Coverage
80 -
+3.7pp
s 00 ™ p—
&
o e g
2 401
o
20 A
0 ¥ — T T
0 100 200 300 400
Revision
Git
100 -
: + Line Coverage
: x Branch Coverage
80 :‘ ’-I"'¢ g
€ 60 g
- -, o
& | == g
g 40 ‘ :
3 - +2.8pp - 8
20 : S x &
0 : T T T
0 500 1000 1500 2000 2500
Revision
Redis
100
+ Line Coverage
. x Branch Coverage
80 A
- -9.2pp
) S
) : g o &
© 2L ey -
g) 40 n n* o w ‘. x g
o : H S
< : . o0 | P
Y .
] Lty
: s K &
0

APR

500 1000 1500 2000 2500
Revision

Coverage (%)

Binutils Curl
100 100
+ Line Coverage + Line Coverage
x Branch Coverage % Branch Coverage
+3.3pp
[} A_ﬁ
< ™7 .
60 - T 60 1 enlimpuien 5
g by soll t x
© o i
q) X x x
40 A 3 40 »
: o
: e ————
: S Om—) +
20 il 20 4 *
0 : : : T : — :
0 500 1000 1500 0 500 1000 1500 2000 2500
Revision Revision
Lighttpd2 Memcached
100 100 .
+ Line Coverage . + Line Coverage
x a:anch Coverage + 1 . 8 p p % Branch Coverage
80 : 80 :
+16-4pp M".. : 'ﬁ:‘“.‘pﬁ‘“
60 - € 60- W
—! > ; .
P S :
40 A ' — = 3 407
0y ol x g| v
20 A E 20 4
B
0 T T T o T T T T
0 100 200 300 0 200 400 600 800
Revision Revision
Vim ZeroMQ
100 100
+ Line Coverage + Line Coverage
x Branch Coverage X Branch Coverage
80 80 +10.7pp ‘
+22.7pp e
L P
60 - 5] & 60
g >
x E :
o —————
40 A é 40 A e,
:
20 A £ 20 A
0 T T T T O T T
0 500 1000 1500 2000 2500 0 100 200

Revision

Revision

10

Patch
Coverage

Bl 100%

B3 (75%, 100%)
3 (50%, 75%]
B (25%, 50%)]
B (0%, 25%]
B 0%

100 -

60 -

20 A

Patch Coverage across projects (revs that introduce executable lines)

APR Binutils Curl Git Lighttpd2 Memc. Redis Vim ZeroMQ a

Can Fuzzers
Help?

YES, BUT...

Not Agile Enough

* Most techniques focus on whole-program testing (it’s easier!)

* Most of our benchmark suites measure global metrics (bugs, coverage)

* Good progress on patch testing techniques, but results still poor overall

Software patch

if (value)

{

initial = value;

value = 0;

}

else

initial = 1;

+ initial = (lhs specified ?
value : 1);

+ value = 0;

Patch
Testing

—

BUGS

PATCH
COVERAGE

BEHAVIORAL
DIFFERENCES

ClFuzz

* Cl version of OSS-Fuzz: 10 minutes/patch
* Runs only the fuzzers that reached the changed files

0SS-Fuzz Projects CIFuzz Runs Crash Uploads
293 108836 1627

grok 41406 1052

According to http://cifuzz.appspot.com/, 7 July 2023 (dashboard active only for a limited time)

Great initiative, but would love to see similar

reports, trophies & community attention as for OSS-Fuzz

*Thanks to Jonathan Metzman for answering my CIFuzz questions 15

Not Fast Enough
24h too long for patch testing

Targeted exploration

KATCH: High-Coverage Testing of Software Patches

Targeted exploration

Cristian Cadar
Department of Computing
Imperial College London, UK
c.cadar@imperial.ac.uk

Paul Dan Marinescu
Department of Computing
Imperial College London, UK
p.marinescu@imperial.ac.uk

Reusing previous analysis results

Marcel Béhme

National University of Singapore, Singapore
marcel.boehme@acm.org

Manh-Dung Nguyen
National University of Singapore, Singapore
dungnguy@comp.nus.edu.sg

Directed Greybox Fuzzing

Van-Thuan Pham*
National University of Singapore, Singapore
thuanpv@comp.nus.edu.sg

Abhik Roychoudhury
National University of Singapore, Singapore
abhik@comp.nus.edu.sg

Running Symbolic Execution Forever

Frank Busse Martin Nowack Cristian Cadar

Imperial College London Imperial College London Imperial College London
United Kingdom United Kingdom United Kingdom
f.busse@imperial.ac.uk m.nowack@imperial.ac.uk c.cadar@imperial.ac.uk

Reusing previous analysis results

Running only the fuzzers that
reached the changed files (CIFuzz)

16

Not Automated Enough

APPLICATION OSS-FUZZ
APR

BINUTILS
CURL

GIT
LIGHTTPD
MEMCACHED
REDIS

VIM
ZEROMQ

NI

According to Fuzz Introspector, https://introspector.oss-fuzz.com/, 28 June 2023

17

https://introspector.oss-fuzz.com/

Not Automated Enough

APPLICATION OSS-FUZZ COVERAGE
APR

BINUTILS
CURL

GIT
LIGHTTPD
MEMCACHED
REDIS

VIM
ZEROMQ

35.31%
5.05%

NI

34.58%

According to Fuzz Introspector, https://introspector.oss-fuzz.com/, 28 June 2023

18

https://introspector.oss-fuzz.com/

Not Automated Enough

APPLICATION OSS-FUZZ COVERAGE FUZZ TARGETS
APR

BINUTILS
CURL

GIT
LIGHTTPD
MEMCACHED
REDIS

VIM
ZEROMQ

35.31% 26
5.05% 20

NI

34.58% 1

According to Fuzz Introspector, https://introspector.oss-fuzz.com/, 28 June 2023

19

https://introspector.oss-fuzz.com/

Papers on improving fuzzing heuristics

Papers on test driver generation

20

Improving Test Suites with Fuzzing?

GNU Coreutils: Is, mkdir, echo, sort, ...
Overall: 84%, Average 91%, Median 95%

16 at 100%
100% -

80%
=
S
= 60%) : ; ;
= KLEE: Unassisted and Automatic Generation of High-Coverage
(% Tests for Complex Systems Programs
o 40%
8 Cristian Cadar, Daniel Dunbar, Dawson Engler *
o Stanford University

20%

0%

1 12 23 34 45 o6 67 78 89
Apps sorted by KLEE coverage

21

Improving Test Suites with Fuzzing?

KLEE coverage — Manual coverage

100% +

80% -

60% -

-20%

Avg/utility
KLEE 91%
Manual 68%

—> Manual tests do much more!

Apps sorted by KLEE coverage — Manual coverage

22

Value of Test Cases

Quality assurance

Debugging Aid

Documentation

Test Suites:
Desired Properties

High Code Coverage Small
High Feature Coverage Fast
™
A good test suite performs a Readable
combination of code-based &
specification-based testing Well-documented

Improving Test Suites with Fuzzing?

* In recent work, we contributed fuzzer-generated tests to the LLVM
test suite (16/24 tests accepted)

* Main challenge: oracles and input minimisation

GrayC: Greybox Fuzzing of Compilers and Analysers for C
Karine Even-Mendoza* Arindam Sharma*
karine.even_mendoza@kcl.ac.uk arindam.sharma@imperial.ac.uk
Department of Informatics, King’s College London Department of Computing, Imperial College London
London, United Kingdom London, United Kingdom
Alastair F. Donaldson Cristian Cadar
alastair.donaldson@imperial.ac.uk c.cadar@imperial.ac.uk
Department of Computing, Imperial College London Department of Computing, Imperial College London
London, United Kingdom London, United Kingdom

ISSTA 2023, Wed @ 14:30, Fuzzing 2 session

Oracles

Input Minimisation

26

Oracles

Manual tests are (typically) written with good functional oracles
Fuzzer-generated tests:

* Generic/crash bugs in general software (main focus in grey- and whitebox fuzzing)

 Logical bugs in software for specific domains (main focus in blackbox fuzzing)

"One fuzzing researcher of particular note is Manuel Rigger

[...] Most fuzzers only look for assertion faults, crashes,

undefined behavior (UB), or other easily detected

anomalies. Dr. Rigger's fuzzers, on the other hand, are able

to find cases where SQLite computes an incorrect answer.”
— SQLite webpage

Logical bugs in general code?
What is the sweet spot?

Patch Specifications

Specifications encoding cross-patch properties

assert (out == out prev + 1)

Patch Specifications via Product Programs

Cristian Cadar Daniel Schemmel Arindam Sharma
Department of Computing Department of Computing Department of Computing
Imperial College London Imperial College London Imperial College London
London, UK London, UK London, UK
c.cadar @imperial.ac.uk d.schemmel@imperial.ac.uk arindam.sharma@imperial.ac.uk

We need a way to make the state of both versions available to the analyser

Product Programs

A mechanism for merging multiple program versions into a single program

Used to reason about hyperproperties in a security context
* Particularly non-interference
* Product program of program P with itself

1) Can product programs work for multiple versions of a program?
2) Can they be constructed automatically for large programs?
3) Can they facilitate the writing of patch specifications?

G. Barthe, J. M. Crespo, C. Kunz, “Relational verification using product programs”
Proc. of the 17th International Symposium on Formal Methods (FM’11)

33

Example

Previous version Current version
x =y - 1; x =y - 1;
z =x/ 4; zZ = X >> 2;

Product program

X prev = y prev - 1;
x =y - 1;

z prev = x prev / 4;
Z =X >> 2;

assert(z == z prev);

34

Preliminary Experience

* We wrote patch specs for several patches from CoreBench
e CoreBench: a collection of complex real-world patches from popular OSS

* We constructed test drivers around the functions involved in patches

* We used AFL++ and KLEE to look for violations of the patch specs

NAK,

M. Bohme and A. Roychoudhury, “CoREBench: Studying complexity of regression errors”,
In Proc. of the International Symposium on Software Testing and Analysis (ISSTA’14)

Patch in Is

static char * make_link_name (char const * ,
char const *);
make_link_name(” "o ") = !

“Do not hard-code ’/’. Use IS _ABSOLUTE _FILE NAME and dir_len
instead. Use stpcpy/stpncpy in place of strncpy/strcpy.”

Patch in Is

if (*linkname =="/")

return xstrdup (linkname);

AFL++ and KLEE
both find a spec
violation:

name = /a
linkname = x

Bug made it into a

char const *linkbuf = strrchr (name, '/’);

if (linkbuf == NULL)

return xstrdup (linkname);

size_t bufsiz = linkbuf - name + 1;

char *p = xmalloc (bufsiz + strlen (linkname) + 1);

strncpy (p, name, bufsiz);

strcpy (p + bufsiz, linkname);

return p;

release, was reported
by a user and fixed

if (IS_ABSOLUTE_FILE_NAME (linkname))
return xstrdup (linkname);
size_t prefix_len =dir_len (name);
if (prefix_len == 0)
return xstrdup (linkname);
char *p = xmalloc (prefix_len + 1 + strlen (linkname) + 1);

stpcpy (stpncpy (p, name, prefix_len + 1), linkname);

return p;

assert(strcmp(p, p_prev) ==0);

37

Patch in Is

AFL++ and KLEE

find new spec

violation:
Name = /X
if (*linkname =="/") Iinknamé {/ay

return xstrdup (linkname);
char const *linkbuf = strrchr (name, '/’);
if (linkbuf == NULL)

return xstrdup (linkname);
size_t bufsiz = linkbuf - name + 1;
char *p = xmalloc (bufsiz + strlen (linkname) + 1);
strncpy (p, name, bufsiz);
strcpy (p + bufsiz, linkname);

return p;

if (IS_ABSOLUTE_FILE_NAME (linkname))
return xstrdup (linkname);
size_t prefix_len =dir_len (name);
if (prefix_len == 0)
return xstrdup (linkname);
char *p = xmalloc (prefix_len + 1 + strlen (linkname) + 1);
stpcpy (stpncpy (p, name, prefix_len + 1), linkname);

if (! ISSLASH (name[prefix_len - 1])) ++prefix_len;
stpcpy (stpncpy (p, name, prefix_len), linkname);

return p; Code patch to
assert(strcmp(p, p_prev) ==0); fix reported bug

38

Patch in Is

No more spec
violations found
is path-based

if (*linkname =="/") equality is used if (IS_ABSOLUTE_FILE_ NAME (linkname))
return xstrdup (linkname); return xstrdup (linkname);
char const *linkbuf = strrchr (name, '/’); size_t prefix_len =dir_len (name);
if (linkbuf == NULL) if (prefix_len ==0)
return xstrdup (linkname); return xstrdup (linkname);
size_t bufsiz = linkbuf - name + 1; char *p = xmalloc (prefix_len + 1 + strlen (linkname) + 1);

char *p = xmalloc (bufsiz + strlen (linkname) + 1); stpcpy (stpncpy (p, name, prefix_len + 1), linkname);

strncpy (p, name, bufsiz); if (! ISSLASH (name[prefix_len - 1])) ++prefix_len;
strcpy (p + bufsiz, linkname); stpcpy (stpncpy (p, name, prefix_len), linkname);
return p; return p;

assert(patheqg(p, p_prev) ==0);

39

Oracles

Input Minimisation

40

Automated Bug Finding
WITHOUT Any Input Generation

> 230K files

(, |
11 Linux readers
(+8 for Windows)

e

On the correctness of electronic documents: studying,
finding, and localizing inconsistency bugs in PDF readers
and files

Tomasz Kuchta! - Thibaud Lutellier? © .
Edmund Wong? - Lin Tan? - Cristian Cadar!

Bug
Reports

41

Examples: Chrome and Firefox Bugs

Error

Failed to load PDF document.

REED

CENSUS TRACT OUTLINE MAP (CENSUS 2003]
L ~ 1

CrUSUS TRAGT OUTIING MAP (GFNSUS 20006}
N\ e s f % i . _

Automated Bug Finding
WITHOUT Any Input Generation

Plenty of inputs that matter: real-world, human-created

Oracle challenge
e Detecting meaningful cross-reader inconsistencies

Too many bugs
* 2% of docs crash at least one reader
* 13% of docs trigger inconsistencies

Too large inputs (documents)

43

PDF Domain: Solutions

* |lgnore inconsistencies imperceptible to the human eye: we

use CW-SSIM algorithm

* Cluster documents based on warnings and errors emitted by

the readers

* Minimise documents based on delta debugging at the level of

PDF objects

@ USDA Foreign Agricultural Service
! GAIN Report
= | Global Agricufture Information Network|

USDA Foreign Agricultural Service
GAIN Report

Global Agriculture Information Network

Voluntary Report - pubic distribution
Date: 11/9/2006
GAIN Report Number: CH6099
China, Peoples Republic of
FAIRS Product Specific
Feed and Feed Addi
2006

ives Registration Update

Approved by:
Mark Petry
U.S. Embassy

Prepared by:
Marcela Rondon

Report Hi
In 2006, the Chinese Ministry of Agriculture (MOA) released several documents to clarify the
application and registration process for new imported feed and feed additives for animal use
in China. The Ministry of Agriculture issued the main document, Announcement 611, to
elaborate on the application and registration process for new feed and feed additives for
export to China._Announcements 658 and 517 are crucial supporting documents and are
also provided. This report contains UNOFFICIAL English translations of these regulatory
documents. Exporters should carefully discuss all relevant regulations with Chinese
Importers to ensure that their interpretation Is accurate.

Voluntary Report - publc distribution
Date: 11/9/2006
GAIN Report Number: CH6099
China, Peoples Republic of
FAIRS Product Specific
Feed and Feed Addi
2006

ives Registration Update

Approved by:
Mark Petry
U.S. Embassy

Prepared by:
Marcela Rondon

Report Hi
In 2006, the Chinese Ministry of Agriculture (MOA) released several documents to clarify the
application and registration process for new imported feed and feed additives for animal use
in China. The Ministry of Agriculture issued the main document, Announcement 611, to
elaborate on the application and registration process for new feed and feed additives for
export to China._Announcements 658 and 517 are crucial supporting documents and are
also provided. This report contains UNOFFICIAL English translations of these regulatory
documents. Exporters should carefully discuss all relevant regulations with Chinese
Importers to ensure that their interpretation Is accurate.

Includes PSD Changes: Nio
Tnclades Trade Matr: No

Includes PSD Changes: Nlo
Tnclades Trade Matr: No

Evince

Chromium

44

Fuzzing and the Bystander Effect
Success or Failure?

Should developers rely on fuzzers to replace test suites?

Ongoing project with Ahmed Zaki and Arindam Sharma

“xmlsec is integrated with OSS-Fuzz and is continuously fuzzed with the latest
libxmI2 code from the master branch. So your tests offer very little on top of that.”

— libxml|2 developer, listing one reason for not accepting some test contributions

Show v entries Search: [xmlsed]

Project name 4 | Language Fuzz build status Coverage build status Introspector build status

xmisec C++ . fail [log] . fail [log] . fail [log]

46

Three Colours of Fuzzing:
Reflections and Open Challenges

Fuzzing is about finding bugs

...but our objective should be to improve software

Key challenge: Better integration of fuzzing into development process
* Automatically generate test drivers / fuzz targets

* Using fuzzing in an incremental fashion

* Generating inputs that trigger different behaviours across versions

* Using fuzzing to enhance test suites

* Moving beyond crash bugs

47

