Dynamic Symbolic Execution:
Between Testing and Verification

Cristian Cadar

(@D SOFTWARE RELIABILITY Imperlal College

GROUP

. nnnnnnnnnnnnnn
cccccccccccccccc
Funded by . eeeeeeeeeeeeeee Keynote @ VSTTE 24
Image credits: Powerpoint, Bing, jackmac34, Gam-Ol, Walkerssk @ Pixabay Prague, CZEChia, 14 October 2024

Formal verification of a realistic compiler

seL4: Formal Verification of an OS Kernel

Gerwin Klein'?, Kevin Elphinstone!?, Gernot Heiser!??
June Andronick!?, David Cock!, Philip Derrin'*, Dhammika Elkaduwe!?! Kai Engelhardt!-? Xavier Leroy
Rafal Kolanski'?, Michael Norrish™*, Thomas Sewell', Harvey Tuch™2!, Simon Winwood!2 . INRIA Paris-Rocquencourt
Domaine de Voluceau, B.P. 105, 78153 Le Chesnay, France

1 2 3 4
NICTA, * UNSW, Qpen Kernel Labs, * ANU XaV|er.Ieroy@|nr|a.fr
ertos@nicta.com.au

Establishing Browser Security Guarantees Industrial hardware and s O I:-I_WAD E

through Formal Shim Verification . . .
= o e software verification with ACL2

Dongseok Jang Zachary Tatlock Sorin Lerner Warren A. Hunt Jr', Matt Kaufmann',
Liisan Dicgo LCSan Diega UC San Diego || srother Moore' and Anna Slobodova?

Implementing TLS with _ _ L _
Verified Cryptographic Security Using Crash Hoare Logic for Certifying the FSCQ File System

Karthikeyan Bhargavan®, Cédric Fournet!, Markulf Kohlweiss!, Alfredo Pironti*, Pierre-Yves Strubf
*INRIA Paris-Rocquencourt, {karthikeyan.bhargavan,alfredo.pironti} @inria.fr
TMicrosoft Research, {fournet,markulf} @microsoft.com M I T CSAI L
fIMDEA Software, pierre-yves @strub.nu

Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chlipala, M. Frans Kaashoek, and Nickolai Zeldovich

ORIENTALIS: Formal Verified OSEK/VDX Real-Time Operating System Safe to the Last Instruction: Automated
Verification of a Type-Safe Operating System

Xiaoxian Zhang
iSoft Infrastructure Software CO., LTD. Jean Yang
.Shanghm, P R‘_ China Massachusetts Institute of Technology
Email: alex.zhang@ t—soﬁ. com.cn Computer Science and Artificial Intelligence Laboratory

Jiangi Shi, Jifeng He, Huibiao Zhu, Huixing Fang, Yanhong Huang
Shanghai Key Laboratory of Trustworthy Computing
East China Normal University, Shanghai, P. R. China
Email: {jgshi,jifeng, hbzhu,wxfang, yhhuang} @sei.ecnu.edu.cn

Chris Hawblitzel
Microsoft Research

VSQLU:@
c

COMPILER IHFMSTHU[TIJHE

VYERIFIED Open

SOFFTWARLE

e @ git

/ APACHE

ﬂ Oﬁlce Binutils

T U AU st e R s i

Complexity

* Complexity of code
* Complexity of specification
* Complexity of verification process

* Difficulty of evolving the system

Features

VERIFIED
SOFTWARE
VERIFEED
VERIFOED SOFTWARE

\\SD FIWARE

>

Performance

Donald Knuth -- Notes on Priority Deques, 1977

procedure insert2 (integer x, 1)
begin B[£] « B[4] v (21 (x mod 16));
size[1] « size[f£]+1;
if x < least[4] then least[!] « x
else if x > greatest[t] then greatest[s] « x;

end.

The implementation of deletion would be similar. It is safe to use O

and 216-1 for -o and +o ,

Beware of bugs in the above code; I have only proved it correct, not

tried it.

John Regehr’s
Piano Test for

Verified Program Verification
OpenSSH

sigsegv_handler () {
cut_rope () ;

Assumptions

Formalisation/model of code is correct
* Model-based verification, incorrect specifications

Programming language semantics are correctly encoded
* Including subtle issues such as undefined, unspecified and implementation-defined behaviour

Compiler, linker, operating system etc. are correct
* Source-level verification

Environment behaves in a certain way
* E.g., input format, reliable network, unlimited resources

Software obeys mathematical rules
* E.g, n+1>nor n+x#n,forxz0

Verification tools are correct
e Large complex systems, sometimes even closed-source
* Machine-checked proofs not always available

etc.

An Empirical Study on the Correctness of
Formally Verified Distributed Systems

Pedro Fonseca Kaiyuan Zhang Xi Wang Arvind Krishnamurthy

University of Washington
{pfonseca, kaiyuanz, xi, arvind}@cs.washington.edu

This paper thoroughly analyzes three state-of-the-art, for-
mally verified implementations of distributed systems: Iron-
Fleet, Verdi, and Chapar. Through code review and testing,

[teesl These bugs were caused by violations of a wide-range
of assumptions on which the verified components relied. OQur

13

Assumptions

* Every method, formal or informal, makes assumptions
* We should do a better job documenting them
* Could take some inspiration from threat models of security research

When the Software is Correct...

VERIFICATION >> TESTING

When the Software is Buggy...

VERIFICATION = TESTING

“Software is likely correct” VS “Software is likely buggy”

Testing Verification
A ————————

Manual Blackbox Greybox Is)yn::’mli.c Sound Static Model Formal
Testing Fuzzing Fuzzing E)‘(,c:rc‘u;:r:\ Analysis Checking Verification
Presence Absence
of Bugs of Bugs

Low(er) Effort High(er) Effort

17

Dynamic Symbolic Execution (DSE)

Program analysis technique for automatically exploring paths through a program

Applications in:
* Bug finding
* Test generation

* Vulnerability detection and
exploitation

e Equivalence checking
* Debugging

* Program repair
Bounded verification
etc. etc.

Dynamic Symbolic Execution in Practice

* Introduced in the 70s, revived mid-2000 by the DART and EGT projects
* Significant interest in the last few years

* Many dynamic symbolic execution/concolic tools available as open-source:
e KLEE, CREST, SPF, FuzzBall, Angr, SymCC, etc.

* Started to be explored and adopted by industry:
* Microsoft, Fujitsu, Hitachi, Bloomberg, Intel, Google, NASA, Samsung, Baidu, etc.
* SAGE from Microsoft found 1/3 of file fuzzing bugs during development of Win 7
 KLEE widely used in both academia and industry

/ https://klee-se.org/
https://github.com/klee/

Popular dynamic symbolic executor primarily developed and maintained at Imperial
Academic impact:

* ACM SIGOPS Hall of Fame Award and ACM CCS Test of Time Award
* 3.5K+ citations to original KLEE paper (OSDI 2008)

* From many different research communities: testing, verification, systems, software
engineering, programming languages, security, etc.

* Many different systems using KLEE: AEG, Angelix , BugRedux, Cloud9, GKLEE, KleeNet,
KLEE-UC, S2E, SemFix, etc.

Growing impact in industry:

* Baidu: [KLEE 2018], Fujitsu: [[PPOPP 2012], [CAV 20139, [ICST 2015], [IEEE Software
2017], [KLEE 2018], Google: [2x KLEE 2021], Hitachi: [CPSNA 2014|, [ISPA 2015],
[EUC 2016], [KLEE 2021], Intel: [WOOT 2015], NASA Ames: [NFM 2014], Samsung:

2x KLEE 2018], Trail of Bits [https://blog.trailofbits.com/], etc.

Active user and developer base with 100+ contributors listed on GitHub, 500+ forks, 2500+
stars, 400+ mailing list subscribers, 400+ participants to KLEE Workshops, etc.

KLEE WorkShOp 2024 Program ~ Attending Call for Contributions ~ Organisation Sponsors Series ~ W

4th International KLEE Workshop on Symbolic Execution
15-16 April 2024 e Lisbon, Portugal ® Co-located with ICSE 2024

Dynamic Symbolic Execution

X

int foo(unsigned x) { /K
intr=x+1; = << —

x>10 x<10

r=2*r; TRUE

FALSE TRUE FALSE
. x>5 x<5
if (x>D9) X>5 X<5

r=r-24; ®

/ ' - Infeasible 2 8
} refurn x / r, 2(x+1) — 24 = 0? (x+1) — 24 = 0? x+1 = 0?

x=11 [x = 237] [x = UINT_MAX?]

Dynamic Symbolic Execution

X

int foo(unsigned x) { /K
intr=x+1; TRUE i

\\QiijfL//

x(>10 XK 10

-9 % ..
r=2 r. TRUE

FALSE TRUE FALSE
X>5 Xx<2

r‘_r' 12' ® X>5 XSS

. Infeasible g

[x=57] [x=117]

X = 2147483653 |

Dynamic Symbolic Execution

Key advantages:

e Systematically explores unique
control-flow paths

 No control-flow abstraction

* No false positives
* theory and practice!

Key challenges:

* Efficiently solving lots of
constraints

e Path explosion, particularly
in the presence of loops

* Reasons about all possible
values on each explored path

* Per-path verification

A path with 1 iteration through the loop

£
A path with 2 iteration through the loop

Merging Paths
'with P. Collingbourne and P. Kelly]

Default behaviour

if (a>b)

max = a;
else max = b; max = a max = b

Path merging (via phi-node folding, when no side effects)

|

if (a>b)

max = a: max = select(a>b, a, b)

else max = b; !

Merging Paths

for (i=0; i < N; i++) {
if (afi]>bl[i]) e Default: 2N paths
max[i] = a[i]; .

else max[i] = b[il; * Path merging: 1 path

}

Outsourcing problem

Path merging _
to constraint solver

SIMD Optimizations

Most processors offer support for
SIMD instructions

* Can operate on multiple data
concurrently

 Many algorithms can make use of them
(e.g., computer vision algorithms)

SIMD

Instruction Pool

»| PU [+

» | PU |+

Data Pool

»| PU [+

»| PU |«

27

OpenCV

Popular computer vision
library from Intel and
Willow Garage

Computer vision
algorithms were

optimized to make
use of SIMD

[Corner detection algorithm]

28

OpenCV: Correctness of SIMD Optimisations

* Crosschecked 51 SIMD-optimized versions against their reference scalar
implementations

 DSE with aggressive path merging

* Verified the correctness of 41 of them up to a certain image size
* Bounded verification

 Found mismatches in the other 10

* Most mismatches due to tricky FP-related issues:
precision, rounding, associativity, distributivity, NaN values

29

OpenCV: Correctness of SIMD Optimisations

Surprising find: min/max not commutative nor associative!

min(a,b) =a<b?a:b

a < b (ordered) - always returns false if one
of the operands is NaN

min(NaN,) = 5
min(5, NaN) = NaN

min(min(5, NaN), 100) = min(NaN, 100) = 100
min(5, min(NaN, 100)) = min(b, 100) =5

30

_L00pP Summaries
'with T. Kapus, O. Ish-Shalom, S. [tzhaky, N. Rinetzky]

e Strings are everywhere
e String operations usually involve loops

e Lots of work from SMT community on building string solvers
e E.g,/Z3, CVC4, HAMPI
e Can we use them for dynamic symbolic execution?

Problem

Developers often use custom loops instead of string functions

#define whitespace(c) (((c) == '_") || ((c) == "\t"))
while (*s I= "\n’) char *p;
S++, for (p = line; p && *p && whitespace (*p); p++)
while (('_"' == *pbeg) || ('\r' == *pbeg)
|| ("\n' == *pbeg) || ('\t' == *pbeg))
char *p = path + strlen (path); pbeg++;
for (; *p != '/' && p != path; p--)

Solution

Replace custom loops with sequence of primitive pointer operations and
calls to standard string functions

#define whitespace(c) (((c) == '_") || ((c) == "\t"))
s = rawmemchr(s, \n'); char *p = line + strspn(line, " _ \t")

pbeg += strspn(pbeg, " . \r\n\t");

p = strrchr(path, '/’);
p =p == NULL ? path : p;

Scope: Memoryless Loops

e Loops conforming to an interface:
o Argument: single pointer to a string
o Returns: pointer to an offset in the string
e Only reads the character under current pointer

e For memoryless loops:
o Equivalence for lengths < 3 implies
equivalence for any length
o Intuitively the proof depends on the fact
that each iteration is independent from
previous ones

35

PLDI "19, June 22-26, 2019, Phoenix, AZ, USA

2 IfAp("awh”) > 1 + |w|, then Ap("ab") = 1.

Proof of Theorem 3.3. Let awb = apa, - - - @jo)+1 be the char-
acters of awb (in particular, ay = a, a1 = b).

1. Assume Ap("awb") = 1 + |w|, then Q;(a;) forall 0 <
i < |wl, and =Q\.+1. Therefore, Qp(a) (since a; = a), and
=Q|s|+1(b). From Claim 1, also =Q,(b). Hence [P]("ab")
completes the first iteration and exits the second iteration;
so Ap("ab") = 1.

2. Assume Ap("awh") > 1 + |w|, then Q;(a;) forall 0 =
i = |w|+ 1.In this case we get Qy(a) and Q1+, (F). Again
from Claim 1, Q, (b). Hence [P]("ab") completes at least two
iterations, and Ap("ab") > 1. O

Theorem 3.4 (Memoryless Equivalence). Let F be a memo-
ryless specification with forward traversal and character set
X, and P a memoryless forward loop. If for every character
sequence « € C* of length |w| < 2 it holds that [P|("w") =
F("ew"), then for any string buffer s € § (of any length),
[P](s) = F(s).

Proof. Assume by contradiction that there exists a string
s € S onwhich P and F disagree, i.e., [P](s) # F(s). We show
that we can construct a string s” such that [P[)(s") # F(s")
and |s'| £ 2, which contradict our hypothesis.

We define Ap(s) as the number of iterations the specifica-
tion F performs before returning. Definition 1 ensures that
0 <= Ap(s) and Ap(s) < strlen(s). By assumption, F is a
forward loop, i.e., start = 0 and end = len. Thus, Ag(s) is the
length of the longest prefix r of s such that r € X .

Since [P|(s) # Fi(s), we know that Ap(s) # Ag(s). If
strlen(s) < 2, we already have our small counterexam-
ple. Otherwise, we consider two cases.

Vocabulary for Summarising String Loops

string.h functions

strspn
strcspn
memchr
strchr
strrchr
strpbrk

pointer manipulation

increment
set to start
set to end

special

backward traverse
return

conditionals

is null
is start

for (char* p = line;
*p && (*p == 7 || *p == \t’);
p++) ;

size_t strspn(const char *s, const char *charset);

“computes the string array index of the first character of s which is not in

charset”

char *p = line + strspn(line, " _ \t")

STRSPN S\t [\O RETURN

N -
—

Loop summary

Interpreter for Loop Summaries

Loop summary has meaning in
an interpreter()

Adding a new vocabulary item as
simple as adding a new case

Loop summarization:

Find sequences of character

tokens that when executed by
our interpreter have the same
behaviour as the original loop

CP)
CF.’

#define STRSPN
#define RETUNR

char* interpreter(char* input) {
char *result = input;

while(token = nextToken())
switch(token)
case STRSPN
result += strspn(result,
nextData());
case RETURN
return result;

Counterexample Guided Synthesis

Generate a sequence of tokens

Loop to fitting all counterexamples
summarize

Success

Fail - generate counterexample

Synthesizer

Dynamic symbolic execution
Symbolic input: sequence of tokens

Constrain it to be equivalent on
current (counter)examples

Ask an SMT solver for a solution

Verifier

Dynamic symbolic execution
Symbolic input: strings of length £ 3

Exhaustively check that the original
loop is equivalent to the interpreted
loop summary

BASH

HHHHHHHHH -AGAIN SHELL

Synthesis Evaluation @zzSSit 5

patch

© git

libosip

grip

e 13 open source programs
e Extracted 115 memoryless loops

e 88/115 successfully
synthesized within 2h*

e 81 within 5 minutes

*Gaussian process optimization to optimize
the vocabulary

Impact of string solvers (KLEE+Z3str) on DSE

Average across loops, 2min timeout

= vanilla.KLEE == str.KLEE

150

100

Can reason

50 about
/////////unbounded
string lengths

8 10 12 14 16 18 20 22

Mean time (s)

Symbolic string length

42

Refactoring

e Used summaries to create patches and send them to developers
e Submitted patches to 5 applications
e Patches accepted in 1ibosip, patch and wget

- for(; *tmp == " ' || *tmp == '\t'; tmp++) {
-}

- for(; *tmp == '\n' || *tmp == '\r'; tmp++) {
-} /* skip LWS */

+ tmp += strspn(tmp, " \t");
+ tmp += strspn(tmp, "\n\r");

43

44

Dynamic Symbolic Execution

» DSE offers a middle ground b/w testing and verification

» DSE systematically explores paths through the code
* Asin testing, no false positives, but only some paths are explored
* Exhaustive path exploration > verification

* As in testing, concrete inputs (best bug reports!) can be produced
e But unlike testing, DSE reasons about all possible values on a path:

per-path verification

* DSE has already been successfully used for bounded verification in

combination with path merging/code summarisation

* Open challenges include:

* the right trade-off b/w individual path exploration and summarization
* reasoning about unbounded inputs
e combining DSE with other testing and verification techniques

* applying DSE to new types of verification scenarios
(particularly interested in patch verification!)

Testing and Verification

 What parts of the software should be verified and
what parts tested?
 What are the partial guarantees in each case?
* Under what assumptions?
e Can one control the FP/FN ratio?

* Can testing/verif. handle fast evolving software?
e (Can | test/verify software changes quickly?

* Does the testing/verification approach integrate
well with existing development practices?
 How hard is to use the testing/verif. system?
* What is the annotation/specif. writing effort?
* Does it enhance/complement/hinder the
existing development practices? 45

	Default Section
	Slide 1

	Formal Verification
	Slide 3
	Slide 4
	Slide 5
	Slide 6: Complexity
	Slide 7
	Slide 8
	Slide 9: John Regehr’s Piano Test for Program Verification
	Slide 10: Assumptions
	Slide 13
	Slide 14: Assumptions
	Slide 15: When the Software is Correct…
	Slide 16: When the Software is Buggy…
	Slide 17

	Dynamc Symbolic Execution
	Slide 18: Dynamic Symbolic Execution (DSE)
	Slide 19: Dynamic Symbolic Execution in Practice
	Slide 20
	Slide 21
	Slide 22: Dynamic Symbolic Execution
	Slide 23: Dynamic Symbolic Execution
	Slide 24: Dynamic Symbolic Execution

	Static Path Merging
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

	String Loop Summaries
	Slide 32: Loop Summaries [with T. Kapus, O. Ish-Shalom, S. Itzhaky, N. Rinetzky]
	Slide 33: Problem
	Slide 34: Solution
	Slide 35: Scope: Memoryless Loops
	Slide 36: Vocabulary for Summarising String Loops
	Slide 37
	Slide 38: Interpreter for Loop Summaries
	Slide 39: Counterexample Guided Synthesis
	Slide 40
	Slide 41: Synthesis Evaluation
	Slide 42: Impact of string solvers (KLEE+Z3str) on DSE Average across loops, 2min timeout
	Slide 43: Refactoring
	Slide 44: Dynamic Symbolic Execution
	Slide 45: Testing and Verification

