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Complexity

* Complexity of code
* Complexity of specification
* Complexity of verification process

* Difficulty of evolving the system
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Donald Knuth -- Notes on Priority Deques, 1977

procedure insert2 (integer x, 1)
begin B[£] « B[4] v (21 (x mod 16));
size[1] « size[f£]+1;
if x < least[4] then least[!] « x
else if x > greatest[t] then greatest[s] « x;

end.

The implementation of deletion would be similar. It is safe to use O

and 216-1 for -o and +o ,

Beware of bugs in the above code; I have only proved it correct, not

tried it.



John Regehr’s
Piano Test for

Verified Program Verification
OpenSSH

sigsegv_handler () {
cut_rope () ;




Assumptions

Formalisation/model of code is correct
* Model-based verification, incorrect specifications

Programming language semantics are correctly encoded
* Including subtle issues such as undefined, unspecified and implementation-defined behaviour

Compiler, linker, operating system etc. are correct
* Source-level verification

Environment behaves in a certain way
* E.g., input format, reliable network, unlimited resources

Software obeys mathematical rules
* E.g, n+1>nor n+x#n,forxz0

Verification tools are correct
e Large complex systems, sometimes even closed-source
* Machine-checked proofs not always available

etc.



An Empirical Study on the Correctness of
Formally Verified Distributed Systems

Pedro Fonseca  Kaiyuan Zhang  Xi Wang  Arvind Krishnamurthy

University of Washington
{pfonseca, kaiyuanz, xi, arvind}@cs.washington.edu

This paper thoroughly analyzes three state-of-the-art, for-
mally verified implementations of distributed systems: Iron-
Fleet, Verdi, and Chapar. Through code review and testing,

[teesl These bugs were caused by violations of a wide-range
of assumptions on which the verified components relied. OQur
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Assumptions

* Every method, formal or informal, makes assumptions
* We should do a better job documenting them
* Could take some inspiration from threat models of security research



When the Software is Correct...

VERIFICATION >> TESTING



When the Software is Buggy...

VERIFICATION = TESTING

“Software is likely correct” VS “Software is likely buggy”



Testing Verification
A ————————

Manual Blackbox Greybox Is)yn::’mli.c Sound Static Model Formal
Testing Fuzzing Fuzzing E)‘(,c:rc‘u;:r:\ Analysis  Checking Verification
Presence Absence
of Bugs of Bugs

Low(er) Effort High(er) Effort
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Dynamic Symbolic Execution (DSE)

Program analysis technique for automatically exploring paths through a program

Applications in:
* Bug finding
* Test generation

* Vulnerability detection and
exploitation

e Equivalence checking
* Debugging

* Program repair
Bounded verification
etc. etc.




Dynamic Symbolic Execution in Practice

* Introduced in the 70s, revived mid-2000 by the DART and EGT projects
* Significant interest in the last few years

* Many dynamic symbolic execution/concolic tools available as open-source:
e KLEE, CREST, SPF, FuzzBall, Angr, SymCC, etc.

* Started to be explored and adopted by industry:
* Microsoft, Fujitsu, Hitachi, Bloomberg, Intel, Google, NASA, Samsung, Baidu, etc.
* SAGE from Microsoft found 1/3 of file fuzzing bugs during development of Win 7
 KLEE widely used in both academia and industry



/ https://klee-se.org/
https://github.com/klee/

Popular dynamic symbolic executor primarily developed and maintained at Imperial
Academic impact:

* ACM SIGOPS Hall of Fame Award and ACM CCS Test of Time Award
* 3.5K+ citations to original KLEE paper (OSDI 2008)

* From many different research communities: testing, verification, systems, software
engineering, programming languages, security, etc.

* Many different systems using KLEE: AEG, Angelix , BugRedux, Cloud9, GKLEE, KleeNet,
KLEE-UC, S2E, SemFix, etc.

Growing impact in industry:

* Baidu: [KLEE 2018], Fujitsu: [[PPOPP 2012], [CAV 20139, [ICST 2015], [IEEE Software
2017], [KLEE 2018], Google: [2x KLEE 2021], Hitachi: [CPSNA 2014|, [ISPA 2015],
[EUC 2016], [KLEE 2021], Intel: [WOOT 2015], NASA Ames: [NFM 2014], Samsung:

2x KLEE 2018], Trail of Bits [https://blog.trailofbits.com/], etc.

Active user and developer base with 100+ contributors listed on GitHub, 500+ forks, 2500+
stars, 400+ mailing list subscribers, 400+ participants to KLEE Workshops, etc.
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4th International KLEE Workshop on Symbolic Execution
15-16 April 2024 e Lisbon, Portugal ® Co-located with ICSE 2024




Dynamic Symbolic Execution

X

int foo(unsigned x) { /K
intr=x+1; = << —

x>10 x<10

r=2*r; TRUE

FALSE TRUE FALSE
. x>5 x<5
if (x>D9) X>5 X<5

r=r-24; ®

/ ' - Infeasible 2 8
} refurn x / r, 2(x+1) — 24 = 0? (x+1) — 24 = 0? x+1 = 0?

x=11 [x = 237] [x = UINT_MAX?]



Dynamic Symbolic Execution
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Dynamic Symbolic Execution

Key advantages:

e Systematically explores unique
control-flow paths

 No control-flow abstraction

* No false positives
* theory and practice!

Key challenges:

* Efficiently solving lots of
constraints

e Path explosion, particularly
in the presence of loops

* Reasons about all possible
values on each explored path

* Per-path verification

A path with 1 iteration through the loop

£
A path with 2 iteration through the loop




Merging Paths
'with P. Collingbourne and P. Kelly]

Default behaviour

if (a>b)

max = a;
else max = b; max = a max = b

Path merging (via phi-node folding, when no side effects)

|

if (a>b)

max = a: max = select(a>b, a, b)

else max = b; !




Merging Paths

for (i=0; i < N; i++) {
if (afi]>bl[i]) e Default: 2N paths
max[i] = a[i]; .

else max[i] = b[il; * Path merging: 1 path

}

Outsourcing problem

Path merging _
to constraint solver




SIMD Optimizations

Most processors offer support for
SIMD instructions

* Can operate on multiple data
concurrently

 Many algorithms can make use of them
(e.g., computer vision algorithms)

SIMD

Instruction Pool

»| PU [+

» | PU |+

Data Pool

»| PU [+

»| PU |«
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OpenCV

Popular computer vision
library from Intel and
Willow Garage

Computer vision
algorithms were

optimized to make
use of SIMD

[Corner detection algorithm]

28



OpenCV: Correctness of SIMD Optimisations

* Crosschecked 51 SIMD-optimized versions against their reference scalar
implementations

 DSE with aggressive path merging

* Verified the correctness of 41 of them up to a certain image size
* Bounded verification

 Found mismatches in the other 10

* Most mismatches due to tricky FP-related issues:
precision, rounding, associativity, distributivity, NaN values

29



OpenCV: Correctness of SIMD Optimisations

Surprising find: min/max not commutative nor associative!

min(a,b) =a<b?a:b

a < b (ordered) - always returns false if one
of the operands is NaN

min(NaN, ) = 5
min(5, NaN) = NaN

min(min(5, NaN), 100) = min(NaN, 100) = 100
min(5, min(NaN, 100)) = min(b, 100) =5

30



_L00pP Summaries
'with T. Kapus, O. Ish-Shalom, S. [tzhaky, N. Rinetzky]

e Strings are everywhere
e String operations usually involve loops

e Lots of work from SMT community on building string solvers
e E.g,/Z3, CVC4, HAMPI
e Can we use them for dynamic symbolic execution?



Problem

Developers often use custom loops instead of string functions

#define whitespace(c) (((c) == '_") || ((c) == "\t"))
while (*s I= "\n’) char *p;
S++, for (p = line; p && *p && whitespace (*p); p++)
while (('_"' == *pbeg) || ('\r' == *pbeg)
|| ("\n' == *pbeg) || ('\t' == *pbeg))
char *p = path + strlen (path); pbeg++;
for (; *p != '/' && p != path; p--)




Solution

Replace custom loops with sequence of primitive pointer operations and
calls to standard string functions

#define whitespace(c) (((c) == '_") || ((c) == "\t"))
s = rawmemchr(s, \n'); char *p = line + strspn(line, " _ \t")

pbeg += strspn(pbeg, " . \r\n\t");

p = strrchr(path, '/’);
p =p == NULL ? path : p;




Scope: Memoryless Loops

e Loops conforming to an interface:
o Argument: single pointer to a string
o Returns: pointer to an offset in the string
e Only reads the character under current pointer

e For memoryless loops:
o Equivalence for lengths < 3 implies
equivalence for any length
o Intuitively the proof depends on the fact
that each iteration is independent from
previous ones

35
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2 IfAp("awh”) > 1 + |w|, then Ap("ab") = 1.

Proof of Theorem 3.3. Let awb = apa, - - - @jo)+1 be the char-
acters of awb (in particular, ay = a, a1 = b).

1. Assume Ap("awb") = 1 + |w|, then Q;(a;) forall 0 <
i < |wl, and =Q\.+1. Therefore, Qp(a) (since a; = a), and
=Q|s|+1(b). From Claim 1, also =Q,(b). Hence [P]("ab")
completes the first iteration and exits the second iteration;
so Ap("ab") = 1.

2. Assume Ap("awh") > 1 + |w|, then Q;(a;) forall 0 =
i = |w|+ 1.In this case we get Qy(a) and Q1+, (F). Again
from Claim 1, Q, (b). Hence [P]("ab") completes at least two
iterations, and Ap("ab") > 1. O

Theorem 3.4 (Memoryless Equivalence). Let F be a memo-
ryless specification with forward traversal and character set
X, and P a memoryless forward loop. If for every character
sequence « € C* of length |w| < 2 it holds that [P|("w") =
F("ew"), then for any string buffer s € § (of any length),
[P](s) = F(s).

Proof. Assume by contradiction that there exists a string
s € S onwhich P and F disagree, i.e., [P](s) # F(s). We show
that we can construct a string s” such that [P[)(s") # F(s")
and |s'| £ 2, which contradict our hypothesis.

We define Ap(s) as the number of iterations the specifica-
tion F performs before returning. Definition 1 ensures that
0 <= Ap(s) and Ap(s) < strlen(s). By assumption, F is a
forward loop, i.e., start = 0 and end = len. Thus, Ag(s) is the
length of the longest prefix r of s such that r € X .

Since [P|(s) # Fi(s), we know that Ap(s) # Ag(s). If
strlen(s) < 2, we already have our small counterexam-
ple. Otherwise, we consider two cases.



Vocabulary for Summarising String Loops

string.h functions

strspn
strcspn
memchr
strchr
strrchr
strpbrk

pointer manipulation

increment
set to start
set to end

special

backward traverse
return

conditionals

is null
is start



for (char* p = line;
*p && (*p == 7 || *p == \t’);
p++) ;

size_t strspn(const char *s, const char *charset);

“computes the string array index of the first character of s which is not in

charset”

char *p = line + strspn(line, " _ \t")

STRSPN S\t [ \O RETURN

N -
—

Loop summary




Interpreter for Loop Summaries

Loop summary has meaning in
an interpreter()

Adding a new vocabulary item as
simple as adding a new case

Loop summarization:

Find sequences of character

tokens that when executed by
our interpreter have the same
behaviour as the original loop

CP)
CF.’

#define STRSPN
#define RETUNR

char* interpreter(char* input) {
char *result = input;

while(token = nextToken())
switch(token)
case STRSPN
result += strspn(result,
nextData());
case RETURN
return result;




Counterexample Guided Synthesis

Generate a sequence of tokens

Loop to fitting all counterexamples
summarize

Success

Fail - generate counterexample



Synthesizer

Dynamic symbolic execution
Symbolic input: sequence of tokens

Constrain it to be equivalent on
current (counter)examples

Ask an SMT solver for a solution

Verifier

Dynamic symbolic execution
Symbolic input: strings of length £ 3

Exhaustively check that the original
loop is equivalent to the interpreted
loop summary



BASH

HHHHHHHHH -AGAIN SHELL

Synthesis Evaluation @zzSSit 5

patch

© git

libosip

grip

e 13 open source programs
e Extracted 115 memoryless loops

e 88/115 successfully
synthesized within 2h*

e 81 within 5 minutes

*Gaussian process optimization to optimize
the vocabulary



Impact of string solvers (KLEE+Z3str) on DSE

Average across loops, 2min timeout

= vanilla.KLEE == str.KLEE

150

100

Can reason

50 about
/////////unbounded
string lengths

8 10 12 14 16 18 20 22

Mean time (s)

Symbolic string length
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Refactoring

e Used summaries to create patches and send them to developers
e Submitted patches to 5 applications
e Patches accepted in 1ibosip, patch and wget

- for(; *tmp == " ' || *tmp == '\t'; tmp++) {
-}

- for(; *tmp == '\n' || *tmp == '\r'; tmp++) {
-} /* skip LWS */

+ tmp += strspn(tmp, " \t");
+ tmp += strspn(tmp, "\n\r");

43
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Dynamic Symbolic Execution

» DSE offers a middle ground b/w testing and verification

» DSE systematically explores paths through the code
* Asin testing, no false positives, but only some paths are explored
* Exhaustive path exploration > verification

* As in testing, concrete inputs (best bug reports!) can be produced
e But unlike testing, DSE reasons about all possible values on a path:

per-path verification

* DSE has already been successfully used for bounded verification in

combination with path merging/code summarisation

* Open challenges include:

* the right trade-off b/w individual path exploration and summarization
* reasoning about unbounded inputs
e combining DSE with other testing and verification techniques

* applying DSE to new types of verification scenarios
(particularly interested in patch verification!)




Testing and Verification

 What parts of the software should be verified and
what parts tested?
 What are the partial guarantees in each case?
* Under what assumptions?
e Can one control the FP/FN ratio?

* Can testing/verif. handle fast evolving software?
e (Can | test/verify software changes quickly?

* Does the testing/verification approach integrate
well with existing development practices?
 How hard is to use the testing/verif. system?
* What is the annotation/specif. writing effort?
* Does it enhance/complement/hinder the
existing development practices? 45
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