
Pending Constraints in Symbolic Execution for
Better Exploration and Seeding

Timotej Kapus • Frank Busse • Cristian Cadar

3rd International KLEE Workshop on Symbolic Execution
15–16 September 2022, London

ASE 2020
Project
https://srg.doc.ic.ac.uk/projects/pending-constraints/

KLEE PR #1334
https://github.com/klee/klee/pull/1334

1

https://srg.doc.ic.ac.uk/projects/pending-constraints/
https://github.com/klee/klee/pull/1334

Symbolic Execution
state represents
program path

2

Symbolic Execution

… and hits
symbolic branch

2

Symbolic Execution

SMT solver checks
feasibility of both

branches

2

Symbolic Execution

if both branches are feasible
the state is forked to explore

both branches

2

Symbolic Execution

“Searcher” selects next
state for exploration.

2

KLEE’s “EGT-style” Execution

KLEE keeps all unfinished
paths/states in memory

3

KLEE’s “EGT-style” Execution

… and randomly selects states for early
termination when it runs out of memory

3

ISSTA 2020 4

KLEE’s “EGT-style” Execution

wasted solving time

5

Symbolic Execution with Pending Constraints

States are always forked!

6

Symbolic Execution with Pending Constraints

Feasibility checked with fast
but incomplete “solver”.

6

Symbolic Execution with Pending Constraints

path is feasible
proceed as in normal symbolic
execution

path is ??
do not alter path condition but add
constraint as “pending constraint”

Feasibility checked with fast
but incomplete “solver”.

6

State Selection

● global state set split into feasible and pending states
● searchers select from feasible states
● if none left, pending states are revived

○ pending constraint is finally checked

○ infeasible states are removed and feasible states are selected

7

Fast incomplete “solver”

Explore paths that are known to be feasible!

8

Fast incomplete “solver”

Explore paths that are known to be feasible!

● paths where symbolic variables have concrete assignments that satisfy the
path condition

○ seeds (test cases, production data, fuzzing, …)

○ cached assignments

8

KLEE’s solver chain

Independent
Solver

Query
Cache

CounterExample
Cache

SMT
Solver

expensive

9

Fast incomplete “solver”

Independent
Solver

Query
Cache

CounterExample
Cache

SMT
Solver

expensive

Stop here!

10

Seeding

Independent
Solver

Query
Cache

CounterExample
Cache

SMT
Solver

expensive

Stop here!

Efficient seeding
seeds are placed in
cache as assignments

11

Example

Solve constraints only when necessary
to make progress

Explore paths that are known to be
feasible

int get_sign(int x) {

 int r = -1;

 if (x >= 1) r = 1;

 if (x == 0) r = 0;

 return r;

}

12

get_sign(x);

Known assignments

∅

int get_sign(int x) {

 int r = -1;

 if (x >= 1) r = 1;

 if (x == 0) r = 0;

 return r;

}

13

get_sign(x);

Known assignments

∅

int get_sign(int x) {

 int r = -1;

 if (x >= 1) r = 1;

 if (x == 0) r = 0;

 return r;

}

r = -1;

13

get_sign(x);

Known assignments

∅

int get_sign(int x) {

 int r = -1;

 if (x >= 1) r = 1;

 if (x == 0) r = 0;

 return r;

}

r = -1;

x >= 1
x ≥ 1x < 1

feasibility unknown

No “feasible states” left: pick one!

13

get_sign(x);

x < 1 x ≥ 1

r = -1;

Known assignments

x >= 1

int get_sign(int x) {

 int r = -1;

 if (x >= 1) r = 1;

 if (x == 0) r = 0;

 return r;

}

x = -2

13

get_sign(x);

x ≥ 1x < 1

r = -1;

Known assignments

x >= 1

int get_sign(int x) {

 int r = -1;

 if (x >= 1) r = 1;

 if (x == 0) r = 0;

 return r;

}

x = -2

x = 0x ≠ 0
x == 0

known feasible path

13

get_sign(x);

x ≥ 1x < 1

r = -1;

Known assignments

x >= 1

int get_sign(int x) {

 int r = -1;

 if (x >= 1) r = 1;

 if (x == 0) r = 0;

 return r;

}

x = -2

x = 0x ≠ 0
x == 0

return r;
13

get_sign(x);

x ≥ 1x < 1

r = -1;

Known assignments

x >= 1

int get_sign(int x) {

 int r = -1;

 if (x >= 1) r = 1;

 if (x == 0) r = 0;

 return r;

}

x = -2

x = 0x ≠ 0
x == 0

return r;
x = 0

r = 0;

13

get_sign(x);

x ≥ 1x < 1

r = -1;

Known assignments

x >= 1

int get_sign(int x) {

 int r = -1;

 if (x >= 1) r = 1;

 if (x == 0) r = 0;

 return r;

}

x = -2 r = 0;

return r;

x = 0x ≠ 0
x == 0

return r;
x = 0

13

get_sign(x);

x ≥ 1x < 1

r = -1;

Known assignments

x >= 1

int get_sign(int x) {

 int r = -1;

 if (x >= 1) r = 1;

 if (x == 0) r = 0;

 return r;

}

x = -2 r = 0;

return r;

x = 0x ≠ 0
x == 0

return r;

r = 1;

x = 0

x = 7

13

get_sign(x);

x ≥ 1x < 1

r = -1;

Known assignments

x >= 1

int get_sign(int x) {

 int r = -1;

 if (x >= 1) r = 1;

 if (x == 0) r = 0;

 return r;

}

x = -2 r = 0;

return r;

x = 0x ≠ 0
x == 0

return r;

r = 1;

x = 0

x = 7

x ≠ 0
x == 0

x = 0

13

get_sign(x);

x ≥ 1x < 1

r = -1;

Known assignments

x >= 1

int get_sign(int x) {

 int r = -1;

 if (x >= 1) r = 1;

 if (x == 0) r = 0;

 return r;

}

x = -2 r = 0;

return r;

x = 0x ≠ 0
x == 0

return r;

r = 1;

x = 0

x = 7

return r;

x ≠ 0
x == 0

x = 0

13

get_sign(x);

x ≥ 1x < 1

r = -1;

Known assignments

x >= 1

int get_sign(int x) {

 int r = -1;

 if (x >= 1) r = 1;

 if (x == 0) r = 0;

 return r;

}

x = -2 r = 0;

return r;

x = 0x ≠ 0
x == 0

return r;

r = 1;

x = 0

x = 7

x ≠ 0
x == 0

return r;

x = 0

13

char msg[8] = symbolic;
uint32_t *hash = md5(msg, 8);
assert(hash[0] == 1471037522);

Reversing md5 hash is hard for SMT solvers

Use
1471037522 = md5("ase2020")[0]

as seed.

Example - Seeding

14

 md5("ase2020")

Suppose this exploration tree for md5

15

Solver queries: 0

Pending Vanilla

16

Solver queries: 0

Pending Vanilla

as
e2
02
0

16

Solver queries: 0

Pending Vanilla

as
e2
02
0

16

Solver queries: 1

Pending Vanilla

as
e2
02
0

16

Solver queries: 2

Pending Vanilla

as
e2
02
0

16

Solver queries: 3

Pending Vanilla

as
e2
02
0

16

Solver queries: 4

Pending Vanilla

as
e2
02
0

16

Solver queries: 5

Pending Vanilla

as
e2
02
0

16

Solver queries: 6

Pending Vanilla

as
e2
02
0

16

Solver queries: 7

Pending Vanilla

as
e2
02
0

16

Solver queries: 8

Pending Vanilla

as
e2
02
0

as
e2
02
0

16

Why pending constraints?

More efficient use of solver solutions

● explore more instructions per query
● spend less time solving infeasible queries

Allows deeper search tree exploration

Empowering search heuristics

● control over constraint solving
● ZESTI

17

Why pending constraints?

More efficient use of solver solutions

● explore more instructions per query
● spend less time solving infeasible queries

Allows deeper search tree exploration

Empowering search heuristics

● control over constraint solving

17

Evaluation

8 real world applications

Hard targets for symbolic execution

2hr runs, 3 searchers, 3 repetitions

24h SQLite study

make

m4

bc

datamash

19

Instruction coverage - non-seeded

35%, 34% resp. 24% more instructions across benchmarks

20

Instruction coverage - seeded

25%, 30% resp. 23% more instructions across benchmarks

21

SQLite3: 24 hour run - non-seeded (random path)

22

SQLite3: 24 hour run - seeded (random-path)

22

Pending constraints
○ aggressively follow feasible paths and explore more instructions per query

○ reduce the constraint solving time

○ could improve the coverage for 8 hard programs

Zesti-Reimplementation

Explores sensitive instructions
around seed.

Found 2 new bugs.

