SOFTWARE RELIABILITY Imperial College
GROUP London

Pending Constraints in Symbolic Execution for
Better Exploration and Seeding

Timotej Kapus « Frank Busse « Cristian Cadar

3™ International KLEE Workshop on Symbolic Execution
15-16 September 2022, London

ASE 2020

Project
https://srg.doc.ic.ac.uk/projects/pending-constraints/

KLEE PR #1334
https://github.com/klee/klee/pull/1334

Pending Constraints in Symbolic Execution for
Better Exploration and Seeding

Timotej Kapus Frank Busse Cristian Cadar
Imperial College London Imperial College London Imperial College London
United Kingdom United Kingdom United Kingdom
t.kapus@imperial.ac.uk fbusse@imperial.ac.uk c.cadar@imperial.ac.uk
ABSTRACT Our approach tackles both scalability challenges of symbolic ex-
Symbolic son is a well established tect for software _ecution. On the one hand, it enables more efficient use of solved

testing and analysis. However, scalability continues to be a chal-
lenge, both in terms of constraint solving cost and path explosion.
In this work, we present a novel approach for symbolic execution,
which can enhance its scalability by aggressively prioritising exe-
cution paths that are already known to be feasible, and deferring
all other paths. We evaluate our technique on nine applications, in-
cluding SQLite3, make and tcpdump and show it can achieve higher
coverage for both seeded and non-seeded exploration.

CCS CONCEPTS
« Software and its engineering — Software testing and de-
bugging.

KEYWORDS
Symbolic execution, KLEE

ACM Reference Format:

Timotej Kapus, Frank Busse, and Cristian Cadar. 2020. Pending Constraints

in Symbolic Execution for Better Exploration and Seeding, In 35th IEEE/ACM
1 Conference on d Software Engi (ASE '20), Sep-

tember 21-25, 2020, Virtual Event, Australia. ACM, New York, NY, USA,

12 pages. https://doi.org/10.1145/3324884.3416589

1 INTRODUCTION

Symbolic execution is a dynamic program analysis technique that
has established itself as an effective approach for many software
engineering problems such as test case generation [4, 12], bug
finding [6, 13], equivalence checking [10, 11], vulnerability analy-
sis [8, 27] and debugging [14, 20].

Even with well-engineered tools like KLEE [4], symbolic exe-
cution still faces important scalability challenges. These fall into
two broad categories: constraint solving and path explosion. As
symbolic execution proceeds, the complexity of constraints and
the number of paths typically increase, often making it difficult to
make meaningful progress.

In this work, we propose a novel mechanism that aggressively
explores paths whose feasibility is known via caching or seeding.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lsts, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org

ASE 20, September 21-25, 2020, Virtual Event, Australia

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
'ACM ISBN 978-1-4503-6768-4/20/09....$15.00
https://doi.org/10.1145/3324884.3416589

constraints, thus reducing the burden on the solver. And on the
other hand, it provides a meta-search heuristic that gives a way to
guide the exploration towards interesting parts of the program.

Before presenting our idea, we briefly summarise symbolic exe-
cution. We focus here on the EGT-style of dynamic symbolic execu-
tion [5], embodied in tools such as KLEE [4], which unlike concolic
execution tools [12, 24], store partially explored paths in memory.
Symbolic execution works by running the program on some sym-
bolic inputs, which means they can initially take any value, as they
are unconstrained. During execution, if a branch condition depends
on a symbolic value, symbolic execution queries an SMT solver for
the feasibility of each of the two branches (under the current path
condition which is initially empty). If both the then and the else
branches are feasible, it forks the execution exploring both paths
and adding the respective branch conditions to each path condition
(PC). After every fork, symbolic execution uses a search heuristic to
decide what path to explore next. Each path explored in symbolic
execution is encoded by a state which keeps all the information
necessary to resume execution of the associated path (PC, program
counter, stack contents, etc.).

The core of our idea revolves around inverting the forking pro-
cess. Instead of doing an (expensive) feasibility check first and
then forking the execution, we fork the execution first. The branch
condition is then added as a pending constraint, which means its
feasibility has not been checked yet. We refer to states (or paths)
with pending path constraints as pending states.

The responsibility for feasibility checking of pending path con-
straints is passed to the search heuristic. This gives the search
heuristic the capability to decide when and for which states it
wants to pay the price of constraint solving. For example, it could
solve pending states immediately, thus restoring the original algo-
rithm, or could take into account the (estimated) cost of constraint
solving in its decisions.

In our approach, we take advantage of an important characteris-
tic of symbolic execution runs: the feasibility of some paths/states
can be quickly determined without using a constraint solver. There
are two common cases. First, modern symbolic execution systems
like KLEE make intensive use of caching and many queries can
be solved without involving the constraints solver [1, 4, 26]. Sec-
ond, symbolic execution is often bootstrapped with a set of seeds
from which to start exploration: these can come from regression
test suites [18, 19] or greybox fuzzers in hybrid greybox/whitebox
fuzzing systems [9, 21, 25). By aggressively following paths for
which feasibility can be quickly determined without using a con-
straint solver, our approach can minimise the constraint solving

https://srg.doc.ic.ac.uk/projects/pending-constraints/
https://github.com/klee/klee/pull/1334

Symbolic Execution

ctate reprecents
program path

Symbolic Execution

... and hits
cymbolic branch

Symbolic Execution

SMT colver checks
feaw‘é:’/fty of both

branches

Symbolic Execution

if both branchee are feacible
the ctate ic forked to explore
both branches

Symbolic Execution

“Cearcher” celects next

ctate for exploration.

KLEE's "EGT-style" Execution

KLEE keepe all unfinished

,bat/ts’/ ctatec in memory

KLEE's "EGT-style" Execution

.. and randomly selects states for early

termination when it runs out of memory

Early terminated paths (%)

100

cceee *

80

60

(| cecccceccsceccacacence

87 Coreutils (one dot per application)

Running Symbolic Execution Forever

Frank Busse
Imperial College London
United Kingdom
fhusse@imperial ac.uk

ABSTRACT

When symbolic execution is used to analyse real-world applications,
it often consumes all available memory in a relatively short mnount
of time, imes making it ible to analyse an

for an extended period. In this paper, we present a technique that
can record an ongoing symbolic execution analysis to disk and
selectively restore paths of interest later, making it possible to run
symbolic execution indefinitely.

To be successful, our approach addresses several essential re-
search challenges related to detecting divergences on re-execution,
storing long-running executions efficiently, changing search heur-
istics during re-execution, and providing a global view of the stored
execution. Our extensive evaluation of 93 Linux applications shows
that our approach is practical, enabling these applications to run
for days while continuing to explore new execution paths.

CCS CONCEPTS
- Software and its engineering — Software testing and de-
bugging,

KEYWORDS
symbolic execution, memoization, KLEE

ACM Reference Format:

Frank Busse, Martin Nowack, and Cristian Cadar. 2020, Running Symbolic
Execution Forever. In Proceedings of the 29th ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA *20), July 18-22, 2020,
Virtual Event, USA. ACM, New York, NY, USA, 12 pages. https://do.org/10.
1145/3395363.3397360

1 INTRODUCTION
For testing real-world software systems, symbolic execution is often
proposed as a method for thoroughly enumerating and testing
every potential path through an application. While achieving full
enumeration is usually impossible due to the fundamental challenge
of the state-space explosion problem, even a subset of paths can be
used to find bugs or generate a high-coverage test suite [4, 7, 14].
And typically, the more paths are explored, the better the outcome.
With the multitude of paths, performing symbolic execution
on a modern machine quickly consumes all available memory. For

Permission to make digital o hard copies of all or part of this work for personal or
clssroom us i grasted without o povidd that copies re ot e o ditzuted

for profit or d the full citation
on the first page. Cupynghlx for Lumpﬂncms s work owned by others than the
wi e To copy otherwise, or

Martin Nowack
Imperial College London
United Kingdom
m.nowack@imperial.ac.uk

Cristian Cadar
Imperial College London
United Kingdom
c.cadar@imperial.ac.uk

£ 100
E
£ 80
g
T 6
E
g w
2 20
=
S 0

87 Coreutils (one dot per application)

Figure 1: When running KLEE'on 87 Coreutils for 2h each
with the default search heuristic and memory limit (2GB),
most paths are terminated early due to memory pressure.

instance, in Figure 1, we use the symbolic execution engine KLEE [4]
to run 87 real-world applications from the GNU Coreutils suite
with a timeout of 2 h, using the default memory limit of 2 GB. For
more than two thirds of the runs (65 out of 87), KLEE prematurely
terminates a substantial amount of paths as the given memory
limit is reached. Each of those paths could have spawned a large
number of new paths if exploration was allowed to continue. Even
if the memory limit is increased to 10 GB, more than half of the
benchmarks prematurely terminate at least 80% of the paths they
started to explore. And worse, for some applications, the premature
Killing of paths causes KLEE to run out of paths entirely after a
relatively short time. For example, with a limit of 2 GB, there are 14
applications where KLEE completely runs out of paths before the
2h timeout. Therefore, for these benchmarks and configurations,
no matter how much time one has at their disposal, KLEE won’t be
able to explore more than a certain number of paths.

One solution for dealing with this problem is to store the paths
being terminated early to disk and then replay them later increment-
ally. Previous work has proposed memoized symbolic execution [26],
where executed paths are recorded to disk as a trie, and then paths
of interest are brought back to memory on replay, reusing the re-
corded constraint solving results to speed up the re-execution. The
approach was shown to be applicable to iterative deepening, re-
gression analysis and coverage improvement. But it was applied to
rather small Java applications (<5000 LOC) and short runs (on the
order of minutes), and has the important limitation that the same
search heuristic needs to be used during re-execution.

In this paper, our ambition is to build upon this idea to design a
technique capable of running symbolic execution on large programs

republish. to post on servers or
aidfor fee Request permisions from persistonH@acTsors
ISSTA '20, July 18-22, 2020, Virtual Event, USA

© 2020 Copyoight hld by the ownerfuthne). Pblcation ights oessed 10 ACH.
ACM ISBN 978-1-4503-8008-9/20/07.

hitps://doi org/10.1145/3395363.3397360

63

, while to explore new paths through the
program using any search heuristic. We show that to scale up

VTo generate this graph, we use our own extension of KLEE that implements memoiz-
ation, but results are similar when using mainline KLEE.

ISSTA 2020

4

KLEE's "EGT-style" Execution

wasted solving time

Symbolic Execution with Pending Constraints

States are alwaye forked!

Symbolic Execution with Pending Constraints

Fea;’/‘éi/ity checked with fast

but incomplete “colver’.

Symbolic Execution with Pending Constraints

Fea;’/‘éi/ity checked with fast

but incomplete “colver’.

,bath i¢ feasible - PAt/! i¢ 77
proceed as in normal symbolic do not alter path condition but add

execution constraint as ‘pending constraint”

State Selection

e global state set split into feasible and pending states
e searchers select from feasible states
e if none left, pending states are revived

o pending constraint is finally checked

o infeasible states are removed and feasible states are selected

Fast incomplete “solver”

Explore paths that are known to be feasible!

Fast incomplete “solver”

Explore paths that are known to be feasible!

e paths where symbolic variables have concrete assignments that satisfy the
path condition

o seeds (test cases, production data, fuzzing, ..)

o cached assignments

KLEE's solver chain

expengive

-
-
-
-

¥
mma INDEPENDENT e QUERY Big COUNTEREXAMPLE pumes SMT
- SOLVER - CACHE - CACHE - SOLVER

Fast incomplete “solver”

mma INDEPENDENT e QUERY Big COUNTEREXAMPLE puge
- SOLVER - CACHE - CACHE <

expengive

7’
4

' SMT
SOLVER

Stop here!

10

Seeding

mmad INDEPENDENT pmeg
. SOLVER <

Efficient ceeding
ceeds are placed in

cache as assignments

\
Y

QUERY Big COUNTEREXAMPLE puge

expengive

-
-
-
-

7’
4

' SMT
SOLVER

CACHE - CACHE <

Stop h

ere!

11

Example

Solve constraints only when necessary
to make progress

Explore paths that are known to be
feasible

int get sign(int x)
int r = -1;
if (x >= 1) r
if (x ==0) r =
return r;

12

int get_sign(int x) {
int r = -1;
if (x >=1) r
if (x ==0) r
return r;

I
o =
“e G

Known assignments

16

get sign(x);

13

int get_sign(int x) {
int r = -1;
if (x >=1) r
if (x ==0) r
return r;

I
o =
“e G

Known assignments

16

get sign(x);

13

get_sign(x);
int get_sign(int x) {

int r = -1; l
if (x >=1) r
if (x ==0) r

nm
(O
- e e
-

]

)

1
=

.

return r;
} x>= 1
x<A1 X1

o
!
O

Known assignments T Lo lty onknown
Z No ‘Feasible states” left: pick one!

13

get_sign(x);
int get_sign(int x) {

int r = -1; l
if (x >=1) r
if (x ==0) r
return r;

I
o =
“e G
S
1

——
1
=
-

x<A1

Known assignments

X =-2

13

int get_sign(int x) {
int r = -1;
if (x >=1) r
if (x ==0) r
return r;

I
o =
“e G

known feasible path

~

s X#0
Known assignments

X =-2

x<A1

get_sign(x);

r=-1;
x>=1
x21
@]

13

int get_sign(int x)
int r = -1;
if (x >=1) r
if (x ==0) r
return r;

Known assignments

X =-2

x#0

4

return r;

x<A1

get sign(x);

r=-1;
x>=1
x21
@]

13

int get_sign(int x) {
int r = -1;
if (x >=1) r
if (x ==0) r
return r;

I
o =
“e G

Known assignments

S oxe2
Cox0

\4

return r;

get sign(x);

13

get sign(x);
int get_sign(int x) {

int r = -1; 1
if (x >=1) r
if (x ==0) r
return r; <=

o
(O
- e e
S
]
——
1
=
.

Known assignments

A\
IETE e return

13

int get_sign(int x) {
int r = -1;
if (x >=1) r
if (x ==0) r
return r;

i n
o
e ‘o

Known assignments

\4

return r;

get_sign(x);

return r;

13

int get_sign(int x) {
int r = -1;
if (x >=1) r
if (x ==0) r
return r;

i
o =
e G

Known assignments

\4

return r;

get sign(x);

return r;

13

get sign(x);
int get_sign(int x) {

int r = -1; l
if (x >=1) r
if (x ==0) r
return r; <=

o
(O
- e e
S
]
—
1
=
.

Known assignments

v
return r; return r; return r;

13

int get_sign(int x)
int r = -1;
if (x >=1) r
if (x ==0) r
return r;

Known assignments

X =-2
x=7
x=0

x#0

4

return r;

x<A1

get sign(x);

r -1;
x>=1
x#0
return r; return r;

13

Example - Seeding

Reversing mds hash is hard for SMT solvers

Use
1471037522 = md5("ase2020")[0]

as seed.

char msg[8] = symbolic;
uint32_t *hash = md5(msg, 8);
assert(hash[@] == 1471037522);

14

Suppose this exploration tree for mds

md5("ase2020")

4
. .
- .
.
R
D
.

15

Solver queries: 0

Pending

Vanilla

16

Solver queries: 0

Pending

Vanilla

16

Solver queries: 0

Pending

Vanilla

D

16

Solver queries: 1

Pending

Vanilla

. .
.

16

Solver queries: 2

Pending

Vanilla

16

Solver queries: 3

Pending

Vanilla

'4

16

Solver queries: 4

Pending

Vanilla

16

Solver queries: 5

Pending

Vanilla

16

Solver queries: 6

Pending

Vanilla

16

Solver queries: 7

Pending

Vanilla

16

Solver queries: 8

Pending

Vanilla

16

Why pending constraints?

More efficient use of solver solutions
e explore more instructions per query
e spend less time solving infeasible queries

Allows deeper search tree exploration

Empowering search heuristics

e control over constraint solving
o /ESTI

17

90%
Vanilla B&21
Pending =27

80% |- =

~
2
B

o
<
xR

bl

Why pending constraints?

B w

o o

g =
]

Relative Infeasible Query Solving Time
g
{7

More efficient use of solver solutions

=
2
X

Q
=X

e explore more instructions per query b ég a E
e spend less time solving infeasible queries -

e

Allows deeper search tree exploration

Empowering search heuristics

e control over constraint solving

Evaluation

8 real world applications

Ogg Vorbis

Hard targets for symbolic execution

datamash

2hr runs, 3 searchers, 3 repetitions

24h SQLite study
m4
%the

UMP& LiBPCAP

o S I o O B O B) B B s O W

Instruction coverage - non-seeded

T T
70 b Vanilla =572 | 70 F Vanilla 2272 i 70 k Vanilla 2222
Pending 7] Pending 771 Pending 771
Combined mm= T Combined mwmmm Combined mwmmm 5
60 - o 60 E o 60 el
S S
2 3
X 50 | - X 50
(%) w
s 5
B 40 - B B 40 -
2 2
- z
- w OT 3
o 7 o 1
g g g 9 B
> K 3 201 NZ WS
) %, S % K ’ r
o b' o [KJ
5 s W
o =0 A B :
K 10 z Moy g Y
K A el S
K i It e Y e I I S
A 0 o B % K od BN

N e ol wed . @
25" O L a9, 0O ¥ et e A
W 29SO 0@ (g0 ol o

(a) Random Path (b) Depth-Biased (c) DFS

35%, 34% resp. 24% more instructions across benchmarks

Instruction coverage - seeded

- W -
KXXKRXK ¢
%
- T R R R N N N e e e e B o
RXXXXXXXXXA) >
%
- NG NN AN N, Y
(AVAVAVAVAVAVAVAVAVAVAVAVAS | “6
>
- RN AN NN N 50
6767676767676 76767¢ =X
L 1 o
IXXXXXXXXXRXXXRXIRXXIXS &,
% %
2,
F o)
o.C
e
2
- e ———— Y
[ERXRT "¢ ¢
- INCN S S KON N
oooo RXXXXXXX XA mv
T £ <
L8 cQ ©,
N N
>9€ vava~ RN
o ©
o
1 1 1 1 1 1 1 1 1
©O 1 O ! O ! O 1;n O 1;n o
n < < m m o~ o~] ~

000T X SUOIIDINIISU| PRIBAOD

' © oO
=£2
CT.=
855
&5
(@]
| I N N [S S S S_—
O 1 © ;N O 1 O 1 O 1n o
n & & N M N N A =

000T X SUOIIINIISU| PRIBAOD

RN N NN NN NN
(\VAVAVAVAVAVAVAVAVAVAVAS|

T
Vanilla =774

Pending 771
Combined mwmmm

50
45 |

40 -
35
30
25 -
20 -
15
10
5
0

(b) Depth-Biased (c) DFS
P

(a) Random Path

25%, 30% resp. 23% more instructions across benchmarks

21

SQLite3: 24 hour run - non-seeded (random path)

Pending RP — Vanilla RP —-—-—
80

70

60 -

50

40

30

Covered Instructions x 1000

20 i ._._._.J!.

10

0

Time (hours)

SQLite3: 24 hour run - seeded (random-path)

Pending RP — Vanilla RP —-—-—

70

60 -

50 -

1000

40 -

30

vered Instructions x

S 20F

10

0

Pending constraints
o aggressively follow feasible paths and explore more instructions per query
o reduce the constraint solving time

o could improve the coverage for 8 hard programs

p d Pending RP ——— Vanilla RP —-—-—
ending Zesti-Reimplementation 70 ' ' ' '
Explores sensitive instructions i
around seed.
g 50
Found 2 new bugs. %
.§
; expengive :3:
: P
, I [
. i
mmag INDEPENDENT e QUERY B COUNTEREXAMPLE _:> SMT
Pl gz P g DM g Dl g) | | | |
i 0 5 10 15 20

1 Time (hours)

