
Running Symbolic Execution Forever
Frank Busse · Martin Nowack · Cristian Cadar

Imperial College London

2nd International KLEE Workshop on Symbolic Execution
10-11 June 2021



2

MoKlee (ISSTA 2020)
Project: https://srg.doc.ic.ac.uk/projects/moklee/

Talk: https://youtu.be/KNEwLszhuuA

Artefact: https://zenodo.org/record/3895271

https://srg.doc.ic.ac.uk/projects/moklee/
https://youtu.be/KNEwLszhuuA
https://zenodo.org/record/3895271


Challenges in Symbolic Execution

Path explosion

Constraint solving overhead

● feasibility checks
● safety checks
● test generation

3



Early Termination (Memory Pressure)

4



Motivation

5

✔

✔

✔

✔

don’t re-explore paths

don’t re-solve queries

large subtree



Memoization
● trade time for space
● store solver results as metadata in execution tree nodes
● persist tree to disk
● re-use results on re-execution

6

memoize

Database



Memoization

7

stored execution treecurrent execution tree
1. load metadata from database
2. re-use solver results

3. branch



Memoization

8

stored execution treecurrent execution tree
1. load metadata from database
2. re-use solver results

3. branch
4. load metadata
5. free metadata in parent



Memoization

9

stored execution treecurrent execution tree

path progresses beyond 
memoized data



Memoization

10

stored execution treecurrent execution tree

path switches to 
recording mode



Memoization

11

stored execution treecurrent execution tree

metadata in database 
is updatedmetadata is freed



Memoization

12

stored execution treecurrent execution tree

new subtree is written 
to database



on branch completeness 
immediately detected

Path Pruning

13

stored execution treecurrent execution tree

completed subtree



Path Pruning

14

stored execution treecurrent execution tree

completed subtree
path gets terminated and 
removed from tree



Persistent Execution Tree (Process Tree) 
● shape-analysis (depth, width) to compare search strategies
● compare different executions (deterministic experiments)
● replay/debug single paths w\o test case
● ...

15

re-use

Database



ISSTA 2012

16



17

(same search strategy)



18

(loads complete tree)



19

(short runtimes)



No divergence detection.
20



Divergences
Causes

● changes in external environment 
(disk layout, date, environment 
variables)

● shared address space between 
execution states

Problem

● exploration of infeasible paths
● false positives/negatives 

21

stored execution treecurrent execution tree

different code path



checksum = hash(BB7) ⊗ hash(BB6) ⊗ … ⊗ C0

Divergence Detection
Mitigation

● checksum over sequence of basic 
blocks validated on each branch

● affected paths are reset

22

BB1

BB2

BB3

BB4

BB5

BB6

BB7

checksum = C0



checksum ≠ hash(BB7) ⊗ hash(BB8) ⊗ … ⊗ C0

Divergence Detection
Mitigation

● checksum over sequence of basic 
blocks validated on each branch

● affected paths are reset

23

BB1

BB2

BB3

BB4

BB5

BB6

BB7

checksum = C0

BB8



Evaluation
● MoKlee is implemented on top of KLEE 1.4
● evaluated on 93 benchmarks:

○ readelf (Binutils)
○ 87 Coreutils
○ diff (Diffutils)
○ find (Findutils)
○ grep
○ libspng
○ tcpdump

24



Evaluation - Runtime

25



Evaluation - Storage Size

26



Evaluation - Divergences

27



Evaluation - Long Running Symbolic Execution

28

14 applications terminate states early and 
then run out of states before the 2h limit!

✔

✔

✔

✔



Evaluation - Long Running Symbolic Execution

29



Evaluation - Long Running Symbolic Execution

30



31

MoKlee: 
https://srg.doc.ic.ac.uk/projects/moklee/

https://srg.doc.ic.ac.uk/projects/moklee/

