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MoKlee (ISSTA 2020)
Project: https://srg.doc.ic.ac.uk/projects/moklee/

Talk: https://youtu.be/KNEwLszhuuA

Artefact: https://zenodo.org/record/3895271

https://srg.doc.ic.ac.uk/projects/moklee/
https://youtu.be/KNEwLszhuuA
https://zenodo.org/record/3895271


Challenges in Symbolic Execution

Path explosion

Constraint solving overhead

● feasibility checks
● safety checks
● test generation

3



Early Termination (Memory Pressure)
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Motivation
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✔

✔

✔

✔

don’t re-explore paths

don’t re-solve queries

large subtree



Memoization
● trade time for space
● store solver results as metadata in execution tree nodes
● persist tree to disk
● re-use results on re-execution
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memoize

Database



Memoization
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stored execution treecurrent execution tree
1. load metadata from database
2. re-use solver results

3. branch



Memoization
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stored execution treecurrent execution tree
1. load metadata from database
2. re-use solver results

3. branch
4. load metadata
5. free metadata in parent



Memoization
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stored execution treecurrent execution tree

path progresses beyond 
memoized data



Memoization
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stored execution treecurrent execution tree

path switches to 
recording mode



Memoization
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stored execution treecurrent execution tree

metadata in database 
is updatedmetadata is freed



Memoization
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stored execution treecurrent execution tree

new subtree is written 
to database



on branch completeness 
immediately detected

Path Pruning

13

stored execution treecurrent execution tree

completed subtree



Path Pruning
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stored execution treecurrent execution tree

completed subtree
path gets terminated and 
removed from tree



Persistent Execution Tree (Process Tree) 
● shape-analysis (depth, width) to compare search strategies
● compare different executions (deterministic experiments)
● replay/debug single paths w\o test case
● ...
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re-use

Database



ISSTA 2012

16



17

(same search strategy)
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(loads complete tree)
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(short runtimes)



No divergence detection.
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Divergences
Causes

● changes in external environment 
(disk layout, date, environment 
variables)

● shared address space between 
execution states

Problem

● exploration of infeasible paths
● false positives/negatives 
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stored execution treecurrent execution tree

different code path



checksum = hash(BB7) ⊗ hash(BB6) ⊗ … ⊗ C0

Divergence Detection
Mitigation

● checksum over sequence of basic 
blocks validated on each branch

● affected paths are reset
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checksum ≠ hash(BB7) ⊗ hash(BB8) ⊗ … ⊗ C0

Divergence Detection
Mitigation

● checksum over sequence of basic 
blocks validated on each branch

● affected paths are reset
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Evaluation
● MoKlee is implemented on top of KLEE 1.4
● evaluated on 93 benchmarks:

○ readelf (Binutils)
○ 87 Coreutils
○ diff (Diffutils)
○ find (Findutils)
○ grep
○ libspng
○ tcpdump
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Evaluation - Runtime
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Evaluation - Storage Size
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Evaluation - Divergences
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Evaluation - Long Running Symbolic Execution
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14 applications terminate states early and 
then run out of states before the 2h limit!

✔

✔

✔

✔



Evaluation - Long Running Symbolic Execution
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Evaluation - Long Running Symbolic Execution
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MoKlee: 
https://srg.doc.ic.ac.uk/projects/moklee/

https://srg.doc.ic.ac.uk/projects/moklee/

