Running Symbolic Execution Forever

Frank Busse - Martin Nowack - Cristian Cadar
Imperial College London

ISSTA 2020, 18-22 July, Virtual Conference, USA

Concrete vs. Symbolic Execution

concrete output

concrete input

Concrete vs. Symbolic Execution

Q2

symbolic input >

-> high-coverage test cases
-> crashing inputs

Challenges in Symbolic Execution

w
w
Constraint solving overhead

e feasibility checks
e safety checks
e test generation

‘ Path explosion

w

Early Termination (Memory Pressure)

100 |

')
ooooo
oooooooo
ooooooooooo
ooooooooo
oooooo

30

60 |

40 |

20

Early terminated paths (%)

87 Coreutils (one dot per application)

Motivation

don 't

Memoization

trade time for space

store solver results as metadata in execution tree nodes
persist tree to disk

re-use results on re-execution

memoize > '

Database

Memoization

current execution tree ctored execution tree

O 1. load metadata from databace O

2. re-uce solver reculte

o

3. branch o
4. load metadata :

5. free metadata in parent

Memoization

current execution tree ctored execution tree

path progrescec beyond

memoized data

Memoization

current execution tree

path cwitches to

recording mode

ctored execution tree

10

Memoization

current execution tree ctored execution tree

o

® metadata in database
) ic updated

1

Memoization

current execution tree

®
" metadata is freed

ctored execution tree

12

Memoization

current execution tree

ctored execution tree

new subtree written
to database

13

Path Pruning

current execution tree

ctored execution tree

14

Path Pruning

current execution tree

on branch completenecs
immediately detected

ctored execution tree

15

Path Pruning

current execution tree

path gets terminated

ctored execution tree

16

Path Pruning

current execution tree

... and removed from tree

ctored execution tree

17

Zx
S’J’@ 2072

Memoized Symbolic Execution

Guowei Yang Corina S. Pasareanu

Sarfraz Khurshid

University of Texas at Austin Carnegie Mellon Silicon Valley University of Texas at Austin

Austin, TX 78712, USA

NASA Ames, M/S 269-2

Austin, TX 78712, USA

guoweiyang@utexas.edu Moffett Field, CA 94035, USA khurshid@ece.utexas.edu
corina.s.pasareanu@nasa.gov

ABSTRACT

This paper introduces memoized symbolic execution (Memoise), a
new approach for more efficient application of forward symbolic
execution, which is a well-studied technique for systematic explo-
ration of program behaviors based on bounded execution paths.
Our key insight is that application of symbolic execution often re-
quires several successive runs of the technique on largely similar
underlying problems, e.g., running it once to check a program to
find a bug, fixing the bug, and running it again to check the modi-
fied program. Memoise introduces a trie-based data structure that
stores the key elements of a run of symbolic execution. Mainte-
nance of the trie during successive runs allows re-use of previously
computed results of symbolic execution without the need for re-
computing them as is traditionally done. Experiments using our
prototype implementation of Memoise show the benefits it holds
in various standard scenarios of using symbolic execution, e.g.,
with iterative deepening of exploration depth, to perform regres-
sion analysis, or to enhance coverage using heuristics.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging—Symbolic
execution

Off-the-shelf constraint solvers are used to reason about the for-
mulas to discard those paths whose conditions are unsatisfiable. In
practice, the technique can be costly to apply due to its inherent
high time and space complexity. There are two key factors that de-
termine its cost: (1) the number of paths that need to be explored
and (2) the cost of constraint solving.

Recent years have seen substantial advances in raw computation
power and constraint solving technology [1], as well as in basic
algorithmic approaches for symbolic execution [4, 25]. These ad-
vances have made symbolic execution applicable to a diverse class
of programs and enable a range of analyses, including bug finding
using automated test generation — a traditional application of this
technique — as well as other novel applications, such as program
equivalence checking [23], regression analysis [17], and continu-
ous testing [27]. All these applications utilize the same path-based
analysis that lies at the heart of symbolic execution. As such, their
effectiveness is determined by the two factors that determine the
cost of the symbolic execution, and at present, reducing the cost of
symbolic execution remains a fundamental challenge.

This paper introduces memoized symbolic execution (Memoise),
a new approach that addresses both factors to enable more efficient
applications of symbolic execution. Our key insight is that apply-
ing symbolic execution often requires several successive runs of

18

The second assumption maintains the correspondence of the ex-
ecutions of program paths across different runs of symbolic execu-
tion, and makes feasible the reuse of symbolic execution results. As
long as the same search order is used during re-execution, the sym-
bolic execution tree corresponding to the same program executions
remain the same, and this assures the correctness of trie-guided [g'ame search otr “5837)
symbolic execution. Merging is correct since the executions cor-
responding to the removed parts remain the same in re-execution
and will yield to the same sub-trie, and thus the removed p 3.2.7/ Node Marking

be brought back from the old trie.

(loads complete tree)

The first step in memoized execution is to mark nodes of inter-
est. Specifically, we characterize parts of the old trie that may be
updated using candidate nodes, which represent roots of sub-trees
potentially updated during memoized execution. Given the can-
didate nodes. we mark nodes on paths that need re-execution — all
nodes on any path from the trie root to a candidate node are marked
(while the rest of the nodes remain unmarked). The exact classifi-
cation of candidate nodes depends on the particular analysis that
is performed. For example, for iterative deepening, the boundary
nodes are the candidate nodes (e.g., n9 in Figure 3). regression
analysis the nodes that are impacted by the program change are
considered as candidate ones (the impacted nodes are found by an
impact analysis as described in Section 4.1.2). The node marking
is reset at the beginning of memoized analysis.

19

The second assumption maintains the correspondence of the ex-
ecutions of program paths across different runs of symbolic execu-
tion, and makes feasible the reuse of symbolic execution results. As

lon
boil
ren

Syr
res

anc
be

Table 1: Iterative Deepening Results

Depth Sym Exe at Depth A Sym B&e at Depth B e
Time (ss) Mem (MB) States #Solver calls (Tﬂ(c"(?sfc”" yre s L’m) Trie (MB)
A | B | Reg | ID || Reg | ID Reg | ID Reg | ID || Reg | ID-p | ID-¢ || Reg | ID-p | ID-c || ID-p | ID-c
24 | 25 16 | 21 305 | 419 349272 | 252952 335358 | 77312 20 24 22 242 474 474 188 | 13.4
29 | 30 34 1 60 246 | 260 || 644184 | 171784 || 629758 | 32256 37 36 27 214 500 486 354 93
(a) WBS Example
Depth Sym Exe at Depth A Sym Exe at Depth B
Time (ss) Mem (MB) States #Solver calls Time (ss) Mem (MB) Trie (MB)
A | B || Reg | ID || Reg | ID Reg | ID Reg | ID || Reg | ID-p | ID-c || Reg | ID-p | IDc || ID-p | ID-c
24 | 25 35 | 38 304 | 367 17103 | 16756 12252 | 2942 47 46 45 413 263 395 0.9 0.8
29 | 30 86 | 87 419 | 333 33273 | 15250 || 25684 | 1540 92 45 45 413 345 263 2.0 0.9
34 | 35 9 | 97 419 | 345 35359 1476 27636 18 102 9 9 292 404 243 2.1 0.1
(b) MerArbiter Example
Depth Sym Exe at Depth A Sym Exe at Depth B
Time (ss) Mem (MB) States #Solver calls Time (ss) Mem (MB) Trie (MB)
A| B || Reg | ID || Reg | (DalifcReanipldte|trBed | 1D || Reg | ID-p | ID-c || Reg | ID-p | ID-c || ID-p | ID-c
9| 10 127 | 125 425 | 352 674 647 255 121 195 76 T, 421 343 296 0.03 | 0.03
11 12 538 | 549 413 | 414 || 2243 | 2113 2160 | 966 1033 490 483 390 316 420 0.12 | 0.11

No divergen

((‘hort runtimes)

ce detection.

(c) Apollo Example

er-
be
les
n-
all
ed
ifi-
1at
ry
on
are

COMSTaCTCa as canargarc ones (tne Tmpactea noacs arc Touna oy an

impact analysis as described in Section 4.1.2). The node marking

is reset at the beginning of memoized analysis.

20

Divergences

Causes .

e changes in external environment
(disk layout, date, environment current execution tree ctored execution tree
variables)

e shared address space between
execution states

Problem

e cxploration of infeasible paths
e false negatives

21

Divergence Detection
Mitigation

e checksum over sequence of basic
blocks validated on each branch
e affected paths are reset

checksum = CO

22

Divergence Detection
Mitigation

e checksum over sequence of basic
blocks validated on each branch
e affected paths are reset

BB6

BB7

checksum = hash(BB7) @ hash(BB6) @ ...

® Co

checksum = CO

23

Divergence Detection
Mitigation

e checksum over sequence of basic
blocks validated on each branch
e affected paths are reset

BB8

BB7

checksum # hash(BB7) @ hash(BB8) © ...

® Co

checksum = CO

24

Evaluation

e MoKlee is implemented on top of KLEE 1.4

e cvaluated on 93 benchmarks:
o readelf (Binutils)

87 Coreutils

diff (Diffutils)

find (Findutils)

grep

libspng

tcpdump

o O O O O O

Evaluation - Runtime

>
>

,é\ A 485
= 120 = D Other
8 9] D Execution tree
= E 40 .
= © = Searcher
= 1 °
\E‘/ 90 8 . Query caches
5} = 30 1 . Constraint solver
g 2 N 25
'4':: 60 - .
=i
.2 %
= 30 2 12.0 -
— %
§ .L; 10 7.9
&2}
0 ! ! I ! ! 5 I !
T T T T 1 —V I T T
Record Replay Prune Replay Prune Record Replay Prune Replay Prune
RndCov RndCov RndCov DFS DFS RndCov RndCov RndCov DFS DFS

26

Evaluation - Storage Size

107 ¢

10° 4

Nodes

A

10° ¢

10 -

3

A
o
“
.]
5 - Coreutils + diff

xlibspng + find

x readelf -+ grep

% tcpdump
10° 10} 10 10

Size (megabytes)

27

Evaluation - Divergences

A

Oaall

Lost instructions (%)
a1
(e

RndCov RndCov
RndCov DFS RndCov DFS

(15 (249 15 (13)

28

Evaluation - Long Running Symbolic Execution

e
w0l -7

60 |
40 +

20

Early terminated paths (%)

87 Coreutils (one dot per application)

Figure 1: When running KLEE'on 87 Coreutils for 2h each
with the default search heuristic and memory limit (2 GB),
most paths are terminated early due to memory pressure.

14 applicatione terminate ran ovt of states
before the 2h limit!

&< < Wikl

Evaluation - Long Running Symbolic Execution

A A
101 4 - base64 - basenc - cut « fmt - fold 101! | - base64 - basenc - cut - fmt - fold
8 -+ head +mktemp + paste + realpath - stty + head + mktemp + paste + realpath « stty
o 1010 1 . tac « WC A dirname A sum %) 1010 1 - tac « WC A dirname A sum
= ¥ 1
Q T
9 L 9 L
2 107 ¢ 10° 1
=! 1 :
o p—{ 1 1
108 E 2 108 R - TP
1 T a +”‘“’WWW»X: R S R N
-+ *ﬂ“"‘*w&wmh bbb i, L
107 ¢ 107 T
~ :
10° £ 106 L o |

30

Evaluation - Long Running Symbolic Execution

A

6\ o ok cut (0.78%) r
% —— fmt (1.56%)
~ head (0.92%)

%3 stty (3.69%)

5 tac (17.56%)

% 1 wc (1.77%)

)

=

= HJ“"JJ
=

=

o

o L

Cumulative execution time (hrs)

—_ oo
! !

Additional coverage (kLOC)

(=]

48.5 1 .
D Other 107 4 100
|:| Execution tree £‘:. ’ —
. Searcher ’ 4 _"E. 03 5
. Query caches 10 1 & %
i . Constraint solver _§ . ‘:'\Ssr ..3 ® *
22.5 1) 168 . ¢ 2 50 ¢
i Z x* « Coreutils + diff @
o i ’ xlibspng + find 2
i 10* 4 x readelf -+ grep 3
E T % tepdump ol
Record Replay Prune Replay Prune 10° 101 102 103 RndCov RndCov DFS DFS
RndCov RndCov RndCov DFS DFS . RndCov DFS RndCov DFS
Size (megabytes) (15) (24) (15) (13)
cut (0.78%) r
—— fmt (1.56%)
head (0.92%)
stty (3.69%)
tac (17.56% , .
:z 21 77%)) MoKlee Artefact: https://srg.doc.ic.ac.uk/projects/moklee/

KLEE: https:/klee.github.io/

= 2"d KLEE Workshop: 22-23 April 2021 in London

32

https://srg.doc.ic.ac.uk/projects/moklee/
https://klee.github.io/

