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Concrete vs. Symbolic Execution
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Concrete vs. Symbolic Execution
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Challenges in Symbolic Execution
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Constraint solving overhead

e feasibility checks
e safety checks
e test generation

‘ Path explosion
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Early Termination (Memory Pressure)
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Motivation
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Memoization

trade time for space

store solver results as metadata in execution tree nodes
persist tree to disk

re-use results on re-execution

memoize > '

Database




Memoization

current execution tree ctored execution tree

O 1. load metadata from databace O

2. re-uce solver reculte

o

3. branch o
4. load metadata :

5. free metadata in parent



Memoization

current execution tree ctored execution tree

path progrescec beyond

memoized data




Memoization

current execution tree

path cwitches to

recording mode

ctored execution tree
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Memoization

current execution tree ctored execution tree
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® metadata in database
) ic updated
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Memoization

current execution tree

®
" metadata is freed

ctored execution tree
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Memoization

current execution tree

ctored execution tree

new subtree written
to database
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Path Pruning

current execution tree

ctored execution tree
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Path Pruning

current execution tree

on branch completenecs
immediately detected

ctored execution tree
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Path Pruning

current execution tree

path gets terminated

ctored execution tree
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Path Pruning

current execution tree

... and removed from tree

ctored execution tree
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ABSTRACT

This paper introduces memoized symbolic execution (Memoise), a
new approach for more efficient application of forward symbolic
execution, which is a well-studied technique for systematic explo-
ration of program behaviors based on bounded execution paths.
Our key insight is that application of symbolic execution often re-
quires several successive runs of the technique on largely similar
underlying problems, e.g., running it once to check a program to
find a bug, fixing the bug, and running it again to check the modi-
fied program. Memoise introduces a trie-based data structure that
stores the key elements of a run of symbolic execution. Mainte-
nance of the trie during successive runs allows re-use of previously
computed results of symbolic execution without the need for re-
computing them as is traditionally done. Experiments using our
prototype implementation of Memoise show the benefits it holds
in various standard scenarios of using symbolic execution, e.g.,
with iterative deepening of exploration depth, to perform regres-
sion analysis, or to enhance coverage using heuristics.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging—Symbolic
execution

Off-the-shelf constraint solvers are used to reason about the for-
mulas to discard those paths whose conditions are unsatisfiable. In
practice, the technique can be costly to apply due to its inherent
high time and space complexity. There are two key factors that de-
termine its cost: (1) the number of paths that need to be explored
and (2) the cost of constraint solving.

Recent years have seen substantial advances in raw computation
power and constraint solving technology [1], as well as in basic
algorithmic approaches for symbolic execution [4, 25]. These ad-
vances have made symbolic execution applicable to a diverse class
of programs and enable a range of analyses, including bug finding
using automated test generation — a traditional application of this
technique — as well as other novel applications, such as program
equivalence checking [23], regression analysis [17], and continu-
ous testing [27]. All these applications utilize the same path-based
analysis that lies at the heart of symbolic execution. As such, their
effectiveness is determined by the two factors that determine the
cost of the symbolic execution, and at present, reducing the cost of
symbolic execution remains a fundamental challenge.

This paper introduces memoized symbolic execution (Memoise),
a new approach that addresses both factors to enable more efficient
applications of symbolic execution. Our key insight is that apply-
ing symbolic execution often requires several successive runs of

18



The second assumption maintains the correspondence of the ex-
ecutions of program paths across different runs of symbolic execu-
tion, and makes feasible the reuse of symbolic execution results. As
long as the same search order is used during re-execution, the sym-
bolic execution tree corresponding to the same program executions
remain the same, and this assures the correctness of trie-guided [g'ame search otr “5837)
symbolic execution. Merging is correct since the executions cor-
responding to the removed parts remain the same in re-execution
and will yield to the same sub-trie, and thus the removed p 3.2.7/ Node Marking

be brought back from the old trie.

(loads complete tree)

The first step in memoized execution is to mark nodes of inter-
est. Specifically, we characterize parts of the old trie that may be
updated using candidate nodes, which represent roots of sub-trees
potentially updated during memoized execution. Given the can-
didate nodes. we mark nodes on paths that need re-execution — all
nodes on any path from the trie root to a candidate node are marked
(while the rest of the nodes remain unmarked). The exact classifi-
cation of candidate nodes depends on the particular analysis that
is performed. For example, for iterative deepening, the boundary
nodes are the candidate nodes (e.g., n9 in Figure 3). regression
analysis the nodes that are impacted by the program change are
considered as candidate ones (the impacted nodes are found by an
impact analysis as described in Section 4.1.2). The node marking
is reset at the beginning of memoized analysis.
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The second assumption maintains the correspondence of the ex-
ecutions of program paths across different runs of symbolic execu-
tion, and makes feasible the reuse of symbolic execution results. As
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Table 1: Iterative Deepening Results

Depth Sym Exe at Depth A Sym B&e at Depth B e
Time (ss) Mem (MB) States #Solver calls (Tﬂ(c"(?sfc”" yre s L’m) Trie (MB)
A | B | Reg | ID || Reg | ID Reg | ID Reg | ID || Reg | ID-p | ID-¢ || Reg | ID-p | ID-c || ID-p | ID-c
24 | 25 16 | 21 305 | 419 349272 | 252952 335358 | 77312 20 24 22 242 474 474 188 | 13.4
29 | 30 34 1 60 246 | 260 || 644184 | 171784 || 629758 | 32256 37 36 27 214 500 486 354 93
(a) WBS Example
Depth Sym Exe at Depth A Sym Exe at Depth B
Time (ss) Mem (MB) States #Solver calls Time (ss) Mem (MB) Trie (MB)
A | B || Reg | ID || Reg | ID Reg | ID Reg |  ID || Reg | ID-p | ID-c || Reg | ID-p | IDc || ID-p | ID-c
24 | 25 35 | 38 304 | 367 17103 | 16756 12252 | 2942 47 46 45 413 263 395 0.9 0.8
29 | 30 86 | 87 419 | 333 33273 | 15250 || 25684 | 1540 92 45 45 413 345 263 2.0 0.9
34 | 35 9 | 97 419 | 345 35359 1476 27636 18 102 9 9 292 404 243 2.1 0.1
(b) MerArbiter Example
Depth Sym Exe at Depth A Sym Exe at Depth B
Time (ss) Mem (MB) States #Solver calls Time (ss) Mem (MB) Trie (MB)
A| B || Reg | ID || Reg | (DalifcReanipldte|trBed | 1D || Reg | ID-p | ID-c || Reg | ID-p | ID-c || ID-p | ID-c
9| 10 127 | 125 425 | 352 674 647 255 121 195 76 T, 421 343 296 0.03 | 0.03
11 12 538 | 549 413 | 414 || 2243 | 2113 2160 | 966 1033 490 483 390 316 420 0.12 | 0.11
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impact analysis as described in Section 4.1.2). The node marking

is reset at the beginning of memoized analysis.
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Divergences

Causes .

e changes in external environment
(disk layout, date, environment current execution tree ctored execution tree
variables)

e shared address space between
execution states

Problem

e cxploration of infeasible paths
e false negatives
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Divergence Detection
Mitigation

e checksum over sequence of basic
blocks validated on each branch
e affected paths are reset

checksum = CO
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Divergence Detection
Mitigation

e checksum over sequence of basic
blocks validated on each branch
e affected paths are reset

BB6

BB7

checksum = hash(BB7) @ hash(BB6) @ ...

® Co

checksum = CO
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Divergence Detection
Mitigation

e checksum over sequence of basic
blocks validated on each branch
e affected paths are reset

BB8

BB7

checksum # hash(BB7) @ hash(BB8) © ...

® Co

checksum = CO
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Evaluation

e MoKlee is implemented on top of KLEE 1.4

e cvaluated on 93 benchmarks:
o readelf (Binutils)

87 Coreutils

diff (Diffutils)

find (Findutils)

grep

libspng

tcpdump

o O O O O O



Evaluation - Runtime

>
>

,é\ A 485
= 120 = D Other
8 9] D Execution tree
= E 40 .
= © = Searcher
= 1 °
\E‘/ 90 8 . Query caches
5} = 30 1 . Constraint solver
g 2 N 25
'4':: 60 - .
=i
.2 %
= 30 2 12.0 -
— %
§ .L; 10 7.9
&2}
0 ! ! I ! ! 5 I !
T T T T 1 —V I T T
Record Replay Prune Replay Prune Record Replay Prune Replay Prune
RndCov RndCov RndCov  DFS DFS RndCov RndCov RndCov  DFS DFS

26



Evaluation - Storage Size
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Evaluation - Divergences
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Evaluation - Long Running Symbolic Execution
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Early terminated paths (%)

87 Coreutils (one dot per application)

Figure 1: When running KLEE'on 87 Coreutils for 2h each
with the default search heuristic and memory limit (2 GB),
most paths are terminated early due to memory pressure.

14 applicatione terminate ran ovt of states
before the 2h limit!
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Evaluation - Long Running Symbolic Execution
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Evaluation - Long Running Symbolic Execution
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Cumulative execution time (hrs)
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