
Compiler Fuzzing:
How Much Does It Matter?

Michaël Marcozzi, Qiyi Tang, Cristian Cadar, Alastair Donaldson

10th South of England Regional Programming Language Seminar (S-REPLS 10)
Birkbeck, University of London, 18 September 2018

Outline

1. About compiler fuzzing
2. Measuring the impact of a compiler bug
3. Impact of compiler bugs found by fuzzing: ongoing study 
4. Preliminary conclusion

2



Outline

1. About compiler fuzzing
2. Measuring the impact of a compiler bug
3. Impact of compiler bugs found by fuzzing: ongoing study 
4. Preliminary conclusion

3

Compilers
• Core component of software development toolchain
• Often relied on with some kind of blind confidence
• But vulnerable to all issues affecting software, including bugs:

pe
r m

on
th

pe
r m

on
th

[Sun et al., ISSTA’16]
4



Compiler bugs

• Consequence of a compiler bug: 
• Compiler crash: 

• Assertion violation, internal error, segfault, timeout, RAM exhaustion… 
• Moderate severity: does not affect the compiled app at production time

• Wrong-code generation: 
• The compiler silently emits target code not semantically equivalent to source
• Critical severity: can go unnoticed until the compiled app misbehaves in production
• Main rationale for extensive compiler verification!

• Approaches to extensive compiler verification: formal proof and fuzzing

5

Compiler fuzzing (1/2)

• Automated random testing of compilers

• Recently attracted much research, following CSmith tool [Yang et al., PLDI’11]

• Researchers found solutions to common test automation challenges: 
• Input generation: create bug-triggering input programs for compilers
• Oracle production: detect when wrong-code generation occurs
• Test reduction: find the minimal miscompiled part of a program

6



Compiler fuzzing (2/2)
• Fuzzers reported many bugs in mainstream open-source C/C++ compilers: 

• Csmith [Yang et al., PLDI’11]: 400+ bugs in GCC/LLVM
• EMI [Le et al., PLDI’14]: 1500+ bugs in GCC/LLVM

• Orange [Nakamura et al., APCCAS’16]: 50+ bugs in GCC/LLVM
• Yarpgen (Intel): 140+ bugs in GCC/LLVM

• How much do these bugs make real apps fail in production? 2 threats to impact:
• Fuzzers find bugs that occur when compiling artificial, randomly created apps
• Miscompilations can be spotted when apps are tested and never reach production

• Our goal: measure the actual impact of these bugs over real apps

7

Outline

1. About compiler fuzzing
2. Measuring the impact of a compiler bug
3. Impact of compiler bugs found by fuzzing: ongoing study 
4. Preliminary conclusion

8



Outline

1. About compiler fuzzing
2. Measuring the impact of a compiler bug
3. Impact of compiler bugs found by fuzzing: ongoing study 
4. Preliminary conclusion

9

Bug impact estimation (1/2)

• Bugs in open-source compilers are reported on 
compiler web site

• A bug report typically contains:
• Sample source code triggering bug
• Discussion of priority and fix by compiler developers
• SVN/Git revision number Nfix where fix was applied 

and passed regression tests
10



Bug impact estimation (2/2)
• Given an app to compile, we consider 3 impact levels for a compiler bug: 

• Level 1: buggy compiler code is triggered (compiler dynamic time)
• Level 2: faulty binary app code is generated (application static time)
• Level 3: faulty binary code is spotted during app testing (application dynamic time)

• Trusting the fix proposed by compiler developers, we have:
• At Nfix-1, the bad buggy compiler
• At Nfix, the good fixed compiler 

• We use good and bad compilers to estimate the bug level for an app

11

Estimating level 1 impact

Warning?

LLVM bug #26323 

Cop
12



Estimating level 2 impact

Mismatch?

13

Estimating level 3 impact

Mismatch?

14



Outline

1. About compiler fuzzing
2. Measuring the impact of a compiler bug
3. Impact of compiler bugs found by fuzzing: ongoing study 
4. Preliminary conclusion

15

Outline

1. About compiler fuzzing
2. Measuring the impact of a compiler bug
3. Impact of compiler bugs found by fuzzing: ongoing study 
4. Preliminary conclusion

16



Compiler bugs sampling
For each (fuzzer, compiler) pair, we picked 15 high-priority bugs:

• Triggering wrong-code generation
• Can be easily reproduced on a at most 10 years old x86/Linux config

• Confirmed by compiler developers and ranked at least P3/normal

• Fix provided in isolation of other code changes

GCC LLVM

Csmith (fuzzer) 15 15

EMI (fuzzer) 15 15

Orange (fuzzer) 15 all (6)

Intel Yarpgen (fuzzer) 15 all (4)

Alive (model-checking) n.a. all (8)

User-reported 15 15

TOTAL 75 63
17

Application sampling

18

• 79 applications for a total of 3.6M lines of code (and more to come)

• Part of the Ubuntu Minimal Linux distribution:
• C or C++ only
• Can be compiled with most recent versions of GCC/LLVM

• System utilities, network protocols, DBMS, compression, text processing…

• Examples: SQLite, Coreutils, Bzip2, Bash… 



Ongoing study

19

• Measure bug impact level for each of the 10,902 (bug, application) pairs
Ø Evaluate fuzzers ability to find bugs impacting real code (level 1 & 2)
Ø Compare this ability:

• Between each of the four fuzzers
• Between the fuzzer and the model-checking tool
• Between using the fuzzers or considering user-reported bugs

Ø Evaluate fuzzers ability to find bugs unseen by app test suites (level 2 ¬3)

• Preliminary result: some bugs have level-2 impact for 47% of applications

Outline

1. About compiler fuzzing
2. Measuring the impact of a compiler bug
3. Impact of compiler bugs found by fuzzing: ongoing study 
4. Preliminary conclusion

20



Outline

1. About compiler fuzzing
2. Measuring the impact of a compiler bug
3. Impact of compiler bugs found by fuzzing: ongoing study 
4. Preliminary conclusion

21

Preliminary conclusion

22

• Hard to have a proper conclusion without full results
• Nice to remember that:

• Compilers are full of bugs (hundreds are fixed every month)
• These bugs can make your app fail even if code is correct and no compiler warning

• Future news about this project on our group website:

• My personal website: 

https://srg.doc.ic.ac.uk

www.marcozzi.net


