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Abstract

Multi-Version Execution (MVE) deploys multiple ver-
sions of the same program, typically synchronizing their
execution at the level of system calls. By default, MVE
requires all deployed versions to issue the same sequence
of system calls, which limits the types of versions which
can be deployed.

In this paper, we propose a Domain-Specific Lan-
guage (DSL) to reconcile expected divergences between
different program versions deployed through MVE. We
evaluate the DSL by adding it to an existing MVE sys-
tem (Varan) and testing it via three scenarios: (1) de-
ploying the same program under different configurations,
(2) deploying different releases of the same program, and
(3) deploying dynamic analyses in parallel with the na-
tive execution. We also present an algorithm to automat-
ically extract DSL rules from pairs of system call traces.
Our results show that each scenario requires a small num-
ber of simple rules (at most 14 rules in each case) and that
writing DSL rules can be partially automated.

1 Introduction

Multi-version execution (MVE) has seen a revival in re-
cent years as a mechanism to increase software security
and reliability [13, 18, 20, 22, 29, 34, 35]. At a high-level,
MVE works by running multiple versions of a program
in parallel, synchronizing their execution typically at the
level of system calls. In a security context, one can run
diversified program variants (e.g., where each variant has
a different memory layout) in such a way that diver-
gences across variants signal a security attack [29, 34].
In a reliability context, one can run diversified variants or
multiple software revisions and allow the overall applica-
tion to continue execution when versions crash [18, 19].

In its initial instantiation, MVE employs a monitor
process that intercepts all the system calls issued by the
underlying versions. When all versions issue the same

system call, the monitor executes the system call once
on behalf of all versions, and copies the results to each
version. If any version diverges, i.e. issues a different
system call, the monitor raises a warning and stops exe-
cuting (in a security context) or terminates the divergent
versions and MVE continues with fewer versions (in a
reliability context).

There are two main issues with this simple form of
MVE. First, executing system calls from all versions in
lock-step imposes a large performance penalty. Second,
this form of MVE relies on all versions issuing the same
sequence of system calls. The latter issue is particularly
problematic because it limits the types of versions that
can be run with MVE. For instance, the diversified vari-
ants cannot issue different but equivalent sequences of
system calls (e.g., those arising due to refactoring), and
the MVE system cannot ignore additional system calls
(e.g., that one version may use for extra logging).

A new architecture, recently introduced by Varan [19],
tackles both issues. In the proposed scheme, which re-
sembles an in-memory record-replay framework, there
is no central monitor. Instead, one of the versions acts
as the leader and executes system calls directly, writing
their results into a shared ring buffer. The other ver-
sions, followers, simply read back the results from the
ring buffer (faster followers always wait for the leader).
In terms of performance, Varan allows the leader to run
at almost native speed, as it does not require the leader
to synchronize with the followers. While Varan provides
flexibility in terms of matching the sequences of system
calls issued by different versions, it does not provide an
easy expressive way to encode the differences in system
call sequences that should be tolerated across versions.

In this paper, we propose a simple, elegant, and ex-
pressive domain-specific language (DSL) specifically de-
signed for writing system call matching rules that allows
a follower to reconcile its sequence of system calls with
that of the leader (§3). We show that this DSL allows
the use of MVE in a wider range of scenarios with mini-
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mal effort, requiring only a small number of rules in each
case. In particular, we show the applicability of our ap-
proach with three different MVE scenarios: (1) running
versions of the same application with different configu-
rations (§2.1), where we needed only 7 rules to execute
Redis under multiple configurations (§5.2), e.g., with and
without a persistent store; (2) running different software
revisions (§2.2), where we required only 7 rules to run
versions of Redis which are up to 730 commits apart
(§5.3); and (3) running native versions of an application
in parallel with versions instrumented for dynamic anal-
ysis (§2.3), where we needed only 14 rules to support the
Valgrind tool [24], 3 rules to support Asan [30], 1 rule
to support Msan [33], and 4 rules to support Tsan [31]
(§5.4).

We also provide an empirical evaluation that shows
that simply comparing pairs of strace logs, which list the
sequence of system calls that each version issues when
run in isolation, is enough to write all the DSL rules (§5).
No knowledge about the particular MVE system or the
versions being used is needed to write the DSL rules. In-
spired by how we manually found the rules, we provide
an algorithm to synthesize some of the rules based on
such pairs of strace logs (§4).

In summary, we make the following contributions:

1. The first paper to present a simple solution to the
problem of handling divergent executions in MVE,
which allows MVE to be easily applicable to many
more scenarios, such as running an application con-
currently under different configurations; running dif-
ferent releases of the same program; and running na-
tive versions in parallel with versions instrumented
for dynamic analysis.

2. The design and implementation of a small and expres-
sive DSL that encodes rules to handle divergences,
and our experience using it in the three scenarios de-
scribed above.

3. The design and implementation of an algorithm that
synthesizes part of the DSL rules using pairs of strace
logs, which can be obtained by running each version
in isolation over the same inputs.

4. An empirical evaluation of our prototypes for the
Varan MVE, that shows the applicability of each sce-
nario and provides evidence about the little effort re-
quired to write the rules, and how much this task can
be further automated by the DSL synthesis algorithm.

2 Applicable Scenarios

At a high-level, some program executions can be con-
sidered equivalent even if they do not execute the same
code. As a trivial example, two executions of the same
correct deterministic C program under different memory

allocators can be considered equivalent because their ob-
servable behavior—the sequence of system calls they
issue—is the same. However, there are scenarios in
which it is beneficial to deploy programs with MVE that
issue different sequences of system calls. For instance,
one may increase reliability by deploying two releases of
the same program [18] in which the order of some sys-
tem calls are changed, but without affecting the overall
behavior of the program—e.g., one release may simply
change the order in which two files are opened.

In this paper, we describe a domain specific language
(DSL) designed to easily encode and tolerate such di-
vergences, and thus enable many useful MVE scenarios.
In the rest of this section, we present and motivate three
scenarios that can take full advantage of our DSL.

2.1 Different Configurations

Depending on its configuration parameters, software can
behave differently by enabling or disabling features such
as logging. For instance, Redis1 is an in-memory key-
value store that can optionally dump the store to persis-
tent storage periodically or after every request.

There are three scenarios in which running different
program configurations under MVE can be useful. First,
for increased reliability: Different configurations may
trigger different bugs so running several configurations
in parallel increases the chance of at least one configu-
ration staying alive and providing service. Second, for
increased security: If security is critical, one may choose
to stop as soon as any configuration diverges in its core
execution from the others. The rationale here is that an
attack may succeed in one configuration, but not all, as
different configurations have slightly different memory
layouts, issue different sequences of system calls, etc.
Third, for inexpensive logging and error diagnosis: A
fast configuration (no logging, no debugging info, full
compiler optimizations, etc.) can be deployed at full
speed, as the leader, while slower configurations (with
logging, debugging, etc.) can be deployed in the back-
ground as followers.

Different configurations share the core functionality
of the program, but each implements additional features
such as logging and persistent storage. From the per-
spective of their external behavior, the sequence of sys-
tem calls issued by an expensive configuration is typi-
cally a superset of the base configuration. For instance,
the Redis configuration that adds persistence issues extra
system calls to open the persistent file on disk and write
data into it. In particular, one will see additional calls
as below, interleaved with the core functionality of the
program:

1https://redis.io/
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1 ...
2 open("persistentStore", ...) = 7
3 ...
4 write(7, ...) = 10
5 ..
6 write(7, ...) = 45
7 ...

As we show in §3, our DSL makes it easy to encode
such divergences, allowing MVE systems to run multiple
configurations of the same program concurrently.

2.2 Different Software Releases
MVE is an effective technique to increase the reliability
of software updates [11,18]. Instead of updating the soft-
ware to a new version that becomes available, the idea is
to run both the new and the old version in parallel. If one
version fails, the system can revert to the other version.
This technique mitigates the problem of unreliable soft-
ware updates [14, 28, 36], as the old version is still avail-
able in the background in case the new version crashes.

Mx [18] applied this approach successfully, but it
could deploy only versions that issue the same sequence
of system calls. However, as we show in this paper, tol-
erating certain classes of system call divergences allows
one to handle a much wider range of software updates.

In general, the external behavior of the software is sta-
ble, especially in mature applications. However, small
changes in the sequence of system calls occur even for
mature applications. Examples include: (1) slightly
changing the API used, and (2) changing the order in
which some system calls are performed. As an exam-
ple in the first category, Lighttpd revision 2436 changes
its sequence call sequence from geteuid, geteguid to
geteuid, getuid, getegid, getgid [19]. As an ex-
ample in the second category, Redis version 2.0.1 re-
orders the sequence setsockopt, time, epoll ctl

into setsockopt, epoll ctl, time.
Our DSL makes it easy to express such differences. As

we show in §5.3, we were able to run together Redis ver-
sions up to 730 commits apart while only using a small
number of simple DSL rules.

2.3 Native and Sanitized Versions
Dynamic analysis techniques instrument or interpret the
program under analysis to detect common programming
errors. For instance, Asan [30], the address sanitizer
that ships with modern C compilers, instruments mem-
ory buffers in the program with red zones to detect buffer
overflow errors. Valgrind [25], a dynamic analysis tool
that takes program binaries as input, interprets the pro-
gram and shadows all the memory that the program uses
to detect a large category of bugs, such as buffer over-
flows and invalid uses of uninitialized memory.

Recorded

stat

open

close

. . .

. . .

Replayed

stat

dup

lseek

close

. . .

. . .

DSL1 1

match,match

DSL2 2

nop,exec

DSL3 3

skip,exec

DSL

4
4

match,match

Figure 1: Example of reconciling two divergent se-
quences of system calls: open on the recorded side
matches dup and lseek on the replayed side.

MVE can be used to deploy sanitized versions in the
background [19]. The key idea is to run the native ver-
sion of the program as a leader—this is the version that
interacts with users and runs at full speed. Sanitized ver-
sions are then run as followers, checking the execution
for errors in the background.

One of the main challenges involved is that the sani-
tized versions change the sequence of system calls that
the program under analysis issues. For instance, analy-
ses may use signal SIGSEGV internally (e.g., to allocate
more shadow memory). This signal may also be used
by the program under analysis. In this case, the analysis
technique registers its own signal handler and intercepts
attempts from the program under analysis to register an-
other signal handler, through system call rt sigaction

in 64-bit GNU/Linux, by forwarding signals generated
outside the analysis to the program’s handler. We de-
scribe some of the changes in further detail in §3.1.

As we show in §5.4, our DSL is able to encode the
divergences introduced by real dynamic analysis tech-
niques, such as Asan [30], Msan [33], Tsan [31] and Val-
grind [25], using only a small number of easy-to-write
rules.

3 DSL for Reconciling MVE Divergences

We now propose a simple and expressive domain specific
language (DSL) for describing system call divergences
between two executions. Our design is driven by real-
world examples illustrating the scenarios described in §2.

Figure 1 shows the high-level architecture of the DSL
we propose. The DSL operates between two sequences
of system calls: the recorded and the replayed. At
each step, and for each sequence, the DSL takes as in-
put the next system call and generates as output the ac-
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1 dsl ::= [#include "file"] [rule]
2 rule ::= [lhs-syscall] => [rhs-syscall]
3 | begin => [rhs-syscall]
4 | group g = { [ name ( [arg] ) ] }
5 lhs-syscall ::= scall pred lbl | nothing
6 rhs-syscall ::= scall pred callback
7 | scall * | label | nothing
8

9 scall ::= name ( [arg] ) | g
10 pred ::= { C-code } | ε

11 lbl ::= as label | ε

12 callback ::= -> ( ret ) { C-code }
13 | -> { C-code } | ε

14 name ::= read | write | ...
15 arg ::= _ | var

Figure 2: Syntax of the DSL. All words in bold and sym-
bols besides |, [, and ] are terminals. Square brackets
denote possible empty comma-separated lists. var, ret,
label, file and g are identifiers.

tion to take. For each matching system call between the
recorded and replayed sequences (steps 1 and 4 in Fig-
ure 1), the DSL simply matches both sides through action
MATCH, thus advancing both sequences by one position.
In the example shown, taken from Valgrind, system call
open is rewritten as a sequence of dup and lseek. The
DSL reconciles the divergence in steps 2 and 3 through
actions EXEC on the replayed sequence, to execute those
system calls. In step 2, the recorded sequence is left
unchanged through action NOP, while in step 3 it is ad-
vanced without matching anything on the replayed side
through action SKIP.

3.1 Syntax
The syntax of the DSL is given by the grammar shown in
Figure 2. A DSL input file is a collection of rules. Each
rule defines how a sequence of recorded system calls, on
the left-hand side (LHS) of the rule, matches a different
sequence of replayed system calls, on the right-hand side
(RHS) of that rule.

For instance, Figure 3a shows a rule that tolerates the
divergence presented in Figure 1. The underscore char-
acters allow any values for the respective arguments, so
the rule matches a recorded open with a replayed se-
quence of dup and lseek, regardless of any arguments.
For system calls where all arguments are unconstrained,
we sometimes use a single underscore for brevity.

The RHS of each rule can refer to system calls on the
LHS through labels. For instance, different releases of
Redis register a different number of signal handlers in
different order. The rule in Figure 3b shows how to use
labels to reconcile such divergences.

Valgrind wraps 19 different system calls with the same
three system calls before and three after. The user thus
needs to repeat the same rule for each wrapped system

1 open(_,_,_) => dup(_), lseek(_,_,_)

(a)

2 rt_sigaction(_,_) as segv,
3 rt_sigaction(_,_) as ill,
4 rt_sigaction(_,_) as bus,
5 rt_sigaction(_,_) as fpe =>
6 ill, rt_sigaction(_,_), bus, fpe, segv

(b)

7 group calls = { read(_,_,_), write(_,_,_) }
8

9 calls as self =>
10 gettid(), write(_,_,_), rt_sigprocmask(_),
11 self,
12 rt_sigprocmask(_), gettid(), read(_,_,_)

(c)

13 open(p,_,_) {
14 return !strcmp($(p), "overcommit");
15 } , read(_,_,_), close(_) => nothing

(d)

16 #include "globals.h" // declares ign
17

18 nothing => open("log.txt",_,_)
19 -> (ret) { ign = $(ret); }
20

21 nothing => write(fd,_,_)
22 { return $(fd) == ign; }

(e)

23 write(_,_,_) => write(_,_,count)
24 -> (ret) {$(ret) = $(count)}

(f)

25 begin =>
26 mprotect(_), mprotect(_) * , munmap(_)

(g)

Figure 3: Examples of DSL rules.

call. Instead, the DSL supports groups: syntactic sugar to
repeat the same rule for different system calls. Figure 3c
shows an example, adapted from Valgrind, that groups
all the system calls that use the same rule.

Some rules apply only when particular values are
passed to those system calls at runtime. For instance,
when the memory allocator malloc reaches a certain per-
centage of the available memory, it tunes its behavior
based on the kernel overcommit settings by reading file
/proc/sys/vm/overcommit memory. The analyses
Asan and Tsan increase the virtual memory to a large per-
centage of the whole available addressing space, which
prevents the allocator from ever tuning its behavior. The
rule in Figure 3d reconciles such executions between na-
tive and sanitized versions, through a predicate written
as C code.
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Figure 4: Visual representation of the DFAs generated
for the rules in Figures 3c, 3d, and 3a, in that order. Sys-
tem call stat shows the default rule. Dotted and solid
arrows transition on the LHS and RHS system calls, re-
spectively. Node shapes denote actions performed on the
recorded and replayed sequences on each transition.

The rule in Figure 3d also shows how to handle ex-
tra system calls that the replayed side issues without
any correspondent on the recorded side through keyword
nothing on the RHS. Of course, keyword nothing can
also be used on the LHS. For instance, when deploying
two versions of Redis in which the replayed side per-
forms logging that the recorded side does not, we need
a rule to ignore opening and writing to the log file. Fig-
ure 3e shows two such rules for open and write.

The rule in Figure 3e also shows an example of syn-
tactic sugar for the common case of argument variables
being literal strings or numbers. In this case, the DSL
simply expands such a rule to an equivalent rule that uses
predicates, similar to the rule shown in Figure 3d.

Predicates execute before a system call is matched,
and therefore cannot access the results of that system
call. Rules can also have a callback written in C, that ex-
ecutes after matching the system call and can access the
(potentially modified) arguments and the return value.
For instance, the rules shown in Figure 3e save the file
descriptor of the matched open system call in global
variable ign, which the rule for write then uses to dis-
card the appropriate system calls. Note that the DSL al-
lows the inclusion of C header files, which enables the
rules to access libraries.

Predicates and callbacks can modify the arguments
passed to the system call, and callbacks can also modify
the return value. For instance, a version of Redis writes
more bytes due to a protocol change. The rule shown
in Figure 3f tolerates such a divergence by changing the
return of the offending write on the replayed side.

The last part of the DSL, the begin rule, expresses
a pattern that denotes the end of a large divergent pre-
fix on the replayed side. System call matching using the
other rules between both sides only starts after the pat-
tern in the begin rule has been matched (which is empty
by default). For instance, Valgrind sets up its internal
state before starting to execute the program under anal-
ysis. This is when Valgrind sets handlers for interesting
signals such as SIGSEGV, as discussed earlier. Valgrind
finishes its set-up with one or more mprotect calls and
a single munmap call. The rule in Figure 3g tolerates this
large divergence in a compact way. This last example
also shows the usage of the star modifier (*), applied to
the second mprotect, which matches the preceding sys-
tem call zero or more times.

3.2 Semantics

The rules are implemented by a collection of Determin-
istic Finite Automata (DFAs). Figure 4 shows the DFAs
generated for some of the examples discussed in §3.1.

The algorithm starts by matching the current recorded
system call with the first LHS on a rule to select a
DFA. System calls that do not appear on the LHS of
any rule have a default rule to themselves (e.g., rule
stat( , ) as self => self shown in Figure 4).

Rules are chosen in the same order in which they are
defined. For instance, Figure 4 defines two rules that ap-
ply to system call open: the rules in Figures 3d and 3a, in
that order. If the predicate is true, the algorithm chooses
the first rule, otherwise it chooses the second one.

With a DFA selected, the algorithm uses it to match
the rest of the sequence of system calls on the LHS of
the rule, if any, with the sequence on the RHS. The DFA
takes each system call to be reconciled, and either ac-
cepts it by moving to the next state, or rejects it. When
the DFA rejects a system call, we say that an irreconcil-
able divergence has occurred because the two executions
have diverged in a way that the DSL cannot reconcile.
The DFA finishes once it accepts the final system call of
a rule. The algorithm then discards the current DFA and
uses the next recorded system call to select the next rule.

Rules that have nothing as the LHS are implemented
as an exception to sequences rejected by the DFA. When
the DFA rejects the first RHS system call of a rule with
a single LHS, the algorithm then looks for a rule with
nothing as the LHS that start with the offending RHS
system call. If found, the algorithm follows that DFA in-
stead of diverging. Otherwise, it diverges as described
above. Rules with nothing on the LHS thus have lower
precedence than all the other rules. Rules that have
nothing as the RHS generate a DFA that only takes
recorded system calls, as shown in Figure 4 for system
call open when the predicate is true.
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3.3 Interface with the MVE System

We now describe how an MVE system interacts with the
DSL, using the example in Figure 1. Initially, the MVE
system uses function init with the next recorded sys-
tem call (e.g., stat) to choose a DFA. As suggested by
Figure 4, a lookup table maps the first recorded system
call to the DFA that implements the corresponding rule.

The MVE system then uses function reconcile to
pass each recorded and replayed system call to the
DSL. This function takes the current DFA, validates
the next transition, and returns: the next DFA state,
the actions to perform on the recorded and replayed
sides, and some flags. On our running example, call-
ing reconcile(stat, stat) yields actions MATCH
on both sides. The MVE thus matches the two sys-
tem calls and their arguments, copying the results from
the recorded to the replayed side, and advances both se-
quences by one. Note that this behavior is what the MVE
system does during regular operation without our DSL.
This call also returns a flag that signals the end of this
rule, so that the MVE uses function teardown to clean
the resources of the finished DFA.

Following Figure 1, the next recorded call is open.
Again, the MVE system uses function init to select the
next rule. In this case, there is a choice between the rules
in Figures 3d and 3a (defined in this order), depending
on the truth value of the predicate in 3d. Let us assume
that the predicate for 3d returns false, thus selecting the
rule in 3a. At this point, calling reconcile(open,

dup) yields actions NOP and EXEC on the recorded and
replayed sides, respectively. Action NOP does nothing
on the recorded side, while action EXEC executes the re-
played system call without matching it with the recorded
side. The MVE thus allows the replayed side to exe-
cute system call dup directly and calls reconcile with
the same recorded call, open, and the next replayed call,
lseek. Calling reconcile(open, lseek) returns
actions SKIP and EXEC, for the recorded and replayed
side, respectively. Action SKIP advances the recorded
side one position, effectively ignoring the system call.

Let us now consider that the predicate for open returns
true, selecting the rule in Figure 3d. In this case, calling
reconcile(open, read) returns actions STORE and
NOP for the recorded and replayed side, respectively. Ac-
tion NOP on the replayed side means that the MVE sys-
tem calls reconcile with the same replayed call, just as
it does for NOP on the recorded side. Action STORE on
the recorded side is useful for rules with multiple LHS
calls, and prompts the MVE to advance the recorded
side and call reconcile with the next recorded call.
Later MATCH actions may refer to previous calls on the
recorded side on which action STORE was taken, which
means that the MVE needs to save all such recorded

calls. For instance, the rule in Figure 3b returns the fol-
lowing sequence of actions for the recorded side: STORE,
STORE, STORE, MATCH 2, NOP, MATCH 3, MATCH 4,
and MATCH 1. Note that function init implicitly per-
forms action STORE on the recorded side.

Function reconcile returns a special flag when an
irreconcilable divergence occurs. The MVE must handle
such a divergence, by reconciling it in some other way,
stopping execution, or terminating that replayed version.

4 Automatic Synthesis of DSL Rules

When designing the DSL and writing rules for the differ-
ent scenarios, we used strace,2 an utility that logs all the
system calls that a process issues, to generate system call
traces for different program versions. For instance, we
used this approach to compare the sequences of system
calls issued by native and Valgrind versions of the same
application when run on the same inputs.

We then noticed that a simple visual diff tool (vimdiff,
part of VIM3) was able to display the two files side-by-
side with most of the matching system calls aligned. Fig-
ures 5a and 5b show an example of such an aligned diff
result. This provides empirical evidence that the rules are
often easy to identify.

Based on our experience of manually writing the rules,
we decided to create an automatic synthesis algorithm
which targets the most common set of rules that we en-
countered, those of the form shown in Figure 3c, which
wrap a system call with zero or more system calls before
and zero or more system calls after. Ignoring grouping,
61% of the rules needed for Valgrind had this form.

Figure 5c shows the pseudo-code of the rule syn-
thesis algorithm.4 Function synthesize takes as in-
put two system call traces, lhs and rhs, and returns
a set of candidate rules. A candidate rule Cand is
a triple (before, s, after) which defines the rule
s => before s after, where s is a system call, and
before and after are (possibly empty) sequences of
system calls.

The algorithm iterates over each unique system call
s in lhs (line 10). It aligns both sequences on the
next instance of s on line 11, and creates an initial
candidate cand by taking the n system calls around
the aligned s on rhs. For instance, for s=open and
n=6, the algorithm aligns both logs on position 56 and
proposes rule: open as s => access, getpid,

getpid, gettid, write, rt sigprocmask, s,

rt sigprocmask, gettid, read, fstat, mmap,

fstat.
2https://strace.io/
3http://www.vim.org
4For space reasons, the pseudo-code ignores error handling, partic-

ularly when function align fails.
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50 access("ld.so.preload")
51

52

53

54

55

56 open("/etc/ld.so.cache")
57

58

59

60 fstat(3, ...)
61 mmap
62

63

64

65

66 close(3)
67

68

69

70

71

72 open("/lib/libm.so.6")
73

74

75

76

50 access("ld.so.preload")
51 getpid
52 getpid
53 gettid
54 write
55 rt_sigprocmask
56 open("/etc/ld.so.cache")
57 rt_sigprocmask
58 gettid
59 read
60 fstat(3, ...)
61 mmap
62 fstat
63 readlink
64 stat
65 mmap
66 close(3)
67 getpid
68 getpid
69 gettid
70 write
71 rt_sigprocmask
72 open("/lib/libm.so.6")
73 rt_sigprocmask
74 gettid()
75 read
76

1 // Helper functions:
2 // uniqueSCalls([[b,b,s,s,a,a,a] = [a,b,s]
3 // split(s, [b,b,s,s,a,a] = ([b,b], s, [s,a,a])
4 // takeHead([a,b,c,d],3) = [a,b,c]
5 // takeTail([a,b,c,d],3) = [b,c,d]
6 // intersectHead([a,b,c], [a,b,z]) = [a,b]
7 // intersectTail([b,c,d], [z,c,d]) = [c,d]
8

9 synthesize(Trace lhs, Trace rhs, int n) -> [Cand]
10 for s in uniqueSCalls(lhs) :
11 (lhs‘, rhsBefore, rhs‘) = align(s, lhs, rhs)
12 before = takeTail(rhsBefore, n)
13 after = takeHead(rhs‘, n)
14 cand = (before, s, after)
15 cands[s] = refineCand(cand, lhs‘, rhs‘)
16 return cands
17

18 align(SCall s, Trace lhs, Trace rhs)
19 -> (Trace, Trace, Trace)
20 (_, l, lhsAfter) = split(s, lhs)
21 while (rhs != []):
22 (rhsBefore, r, rhsAfter) = split(s, rhs)
23 if (l.args == r.args) :
24 return (lhsAfter, rhsBefore, rhsAfter)
25

26 refineCand(Cand c, Trace lhs, Trace rhs) -> Cand
27 while (lhs != [] and rhs != []):
28 (lhs, rhsBefore, rhs) = align(c.s, lhs, rhs)
29 before = intersectTail(c.before, rhsBefore)
30 after = intesectHead(c.after, rhs)
31 return c

(a) (b) (c)

Figure 5: Example sequences of system calls issued by a native execution (5a) and the same execution under Valgrind
(5b), and pseudo-code for the synthesis algorithm (5c). Matching system calls in 5a and 5b are aligned and highlighted.

Of course, the initial candidate rule is unlikely to
be correct. The algorithm then refines that candidate
using the rest of the logs on line 15 as follows. First, it
finds the next aligned pair of the same system call on
line 28. In our example, this yields position 72 in the
traces. The algorithm then computes the intersection of
the current rule with the system calls that surround the
new matching on lines 29–30. The algorithm repeats
this refinement step for each aligned pair of the same
system call, iteratively discarding system calls that were
captured by accident by the initial candidate. Back to our
example, the algorithm discards positions 50 and 60–62,
thus finding the correct rule: open as s => getpid,

getpid, gettid, write, rt sigprocmask, s,

rt sigprocmask, gettid, read.

In this case, the algorithm found the correct rule in a
single refinement step, but this may not be always the
case. For instance, if position 76 contained system call
fstat, as position 60, then the algorithm would keep
system call fstat as the end of the refined rule, result-
ing in an incorrect rule due to over-capture. The algo-
rithm is prone to over-capture for under-represented sys-
tem calls (e.g., those that only appear once or twice in the
whole log) because the algorithm cannot refine them past
the initial candidate(s). Sorting system calls by their fre-

quency in function uniqueSCalls improves the quality
of the results by leaving under-represented system calls
to the end.

The algorithm is also prone to misalignment, when
it aligns two system calls incorrectly and then gen-
erates the trivial rule syscall as s => s. In our
experience, misalignment happens only due to non-
determinism (e.g., user input timing). Note that the sys-
tem call comparison, in line 23, already handles some
non-determinism. For instance, two write system calls
on the same file descriptor and with the same size are
considered equal, regardless of the contents. Similarly,
two open system calls in directory /tmp are considered
equal, even if the files have different names. This allows
to align executions that print the current time or the pro-
cess ID, and executions that create temporary files with
different names. Note also that a correct MVE system
handles these and other sources of non-determinism that
happen during runtime.

The algorithm also fails when the pattern for reconcil-
ing a given system call changes. This may happen based
on the arguments passed to the system call (e.g., opening
a special file uses a different rule). The DSL provides C
predicates to handle such cases, but the synthesis algo-
rithm cannot generate them.
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5 Evaluation

This section describes the empirical evaluation of the
DSL we propose for reconciling system call divergences
across program executions. In particular, we evaluate the
DSL for each of the application scenarios that we de-
scribe in §2, using Varan as the underlying MVE sys-
tem [19]. We also describe the empirical evaluation of
the DSL synthesis algorithm in generating rules for the
sanitized versions scenario.

5.1 Implementation
We implemented the DSL parser and the synthesis algo-
rithm in Haskell, with 1388 and 422 LOC, respectively.

We evaluated the DSL with Varan as the MVE system,
whose architecture we presented in the introduction. We
modified Varan to work with the DSL in several ways.
First, Varan builds C files from DSL input files and in-
cludes the generated files during compilation. At run-
time, we added a flag for Varan to load a particular DSL
file for the execution. The DSL-based matching runs on
the followers. In our experiments, we use a single fol-
lower, but in principle we could run multiple followers,
each with its own DSL rules.

We include the generated C files with Varan at build
time for ease of implementation. There is no fundamen-
tal reason to prevent each DSL file to be compiled sepa-
rately (e.g., as a shared object) and loaded dynamically.
This would make Varan easier to extend to other scenar-
ios and we plan to implement this feature in the future.

Currently, we implemented rules with multiple LHS
system calls through several rules with a single LHS,
bound together through predicates that keep track of the
matching sequence. In the future, we plan to implement
this directly in the DSL.

5.2 Different Configurations
We explored the scenario in §2.1 by deploying Redis
3.2.6 with Varan using different configurations. The
leader was configured to keep an in-memory store and
write minimal logs. The follower used one of the fol-
lowing configurations: (1) persistent store,5 (2) verbose
(debug) logs, and (3) both 1 and 2. We required only 7
rules to handle all divergences.

As expected, the sequences of system calls issued in
these three configurations were a superset of those issued
by the leader. Most of the DSL rules simply ignored ex-
tra operations performed over file paths. For instance,
Configuration 1 required a variation of the rule shown
in Figure 3e to ignore manipulating the persistence file.

5appendonly yes and appendfsync always.

Table 1: Redis versions tested, number of commits be-
tween versions, and number of rules needed.

ID Versions Commits Rules
1 1.3.8∗ – 1.3.10 40 0
2 1.3.10 – 1.3.12 105 0
3 1.3.12 – 2.0.0 92 1
4 2.0.0 – 2.0.5 34 1
5 2.0.5 – 2.2.0 730 3
6 2.2.0 – 2.2.15 110 2

* Revision a71f072

We wrote a C library to simplify managing ignored file
paths and associated descriptors to minimize the C code
needed for each rule.

Configuration 1 issues one less gettimeofday call
early in the execution. To reconcile this divergence, we
had to use a long rule that captures context from the
previous 8 system calls. Configuration 2 issues strictly
more gettimeofday to write timestamps on log entries.
A simple rule nothing => gettimeofday( , ) suf-
ficed to tolerate such divergences. Configuration 3 sim-
ply required a trivial merge of the DSL files for Con-
figurations 1 and 2. However, we note that in general,
merging DSL files is not guaranteed to tolerate the com-
bination of behaviors that each file tolerates in isolation.

5.3 Software Releases

As discussed in §2.2, the DSL can be used to deploy dif-
ferent program releases. We deployed the pairs of Redis
versions listed in Table 1, by running the old version as
the leader and the new version as the follower. We con-
figured leader and follower to use separate log files, with
a verbose logging level. We then added rules for ignor-
ing log files, with 6 rules totaling 15 lines. These rules
are common to all experiments and are not included in
Table 1. We used the redis-benchmark included in Re-
dis 1.3.8 as our workload, configured with a single client
and performing one request for each operation (we are
interested in functionality rather than performance).

We start with Redis 1.3.8 revision a71f072 so that our
results can be compared with Mx, which could not de-
ploy different versions that change the sequence of sys-
tem calls [18]. Pairs 1 and 2 required no additional rules.

In Pair 3, version 2.0.0 registers one more signal
handler than previous versions (for SIGTERM), which
can be expressed with the simple rule nothing =>

rt sigaction(15, , ). In Pair 4, version 2.0.5

changes the order of a time system call, from before to
after an epoll ctl. We used a rule similar to the rule
shown in Figure 3b to tolerate this divergence.
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Pair 5 had most changes, with 730 commits. How-
ever, all divergences introduced in these commits re-
quired only three rules, similar to those presented before:
ignoring file paths and stat calls on those paths (one
rule); issuing extra time system calls on one side (one
rule); and a write system call that writes more bytes
than previous versions, due to protocol differences, as
we described in detail in §3.1 and Figure 3f (one rule).

Finally, pair 6 required the rule nothing =>

gettimeofday( , ) to handle extra system calls, and
a rule to tolerate a change in the order of multiple
rt sigaction system calls, as shown in Figure 3b.

We were able to deploy six pairs with releases up to
730 commits apart with minimal effort (7 rules in total).
Our approach works especially well for applications that
keep backwards-compatibility, such as Redis, which tend
to retain external behavior between releases and newer
versions still support older data formats and protocols.

5.4 Dynamic Analyses

We used Varan to deploy the following existing dynamic
analyses as followers of a native leader: Asan, Msan,
Tsan, and Valgrind (with the memcheck tool). Asan [30],
Msan [33], and Tsan [31] are the address, memory, and
thread sanitizer, respectively, which ship with modern
releases of popular C/C++ compilers Clang and GCC.
We used the ones that ship with Clang version 3.8. Val-
grind [32] checks for uses of invalid memory (i.e. unini-
tialized, unallocated, or freed memory) in C/C++ pro-
grams through heavyweight dynamic instrumentation.
We used Valgrind version 3.11 built from revision 15920
(VEX revision 3233).

We executed Git6 version 2.9.2, a widely-used version
control system, with all the analyses described above
(commands log, blame, diff, and tag). We also exe-
cuted the following applications with Asan and Valgrind:
ssh and ssh-keygen from OpenSSH7 version 7.1, a
suite of utilities used to secure communications by en-
crypting network traffic; HTop8 version 2.0.1, an inter-
active system monitor and process viewer, and VIM ver-
sion 7.4, a screen-oriented text editor.

We manually wrote a DSL file for each analysis, mak-
ing it possible to run all the programs we mentioned with
all the configurations we listed. Msan required the small-
est DSL file, with 1 rule totaling 7 lines; Asan required 3
rules totaling 10 lines, and Tsan required 4 rules totaling
13 lines. The most interesting rule, shared by all these
three analyses, is shown in Figure 3d and described in
§3.1. Other rules ignore the system calls in which the
leader sets up signal handlers for signals that the analy-

6https://git-scm.com/
7http://www.openssh.com/
8http://hisham.hm/htop/

ses already handle, as described in §2.3; and ignore ex-
tra system calls that the analyses issue (nanosleep and
sched getaffinity).

As expected, Valgrind required more effort with 14
rules totaling 104 lines. Valgrind required a begin rule
with 3 lines to ignore its initialization (rule in Figure 3g).
We also grouped 19 system calls that use one of two rules
(one shown in Figure 3c), thus saving implementation ef-
fort and improving the readability of the DSL file.

Handling system call open under Valgrind required
two rules: a general rule, illustrated by positions
51–59 in Figure 5; and a specialized rule for file
/proc/self/cmdline, the one in Figure 3a but with
an appropriate predicate. When a process attempts to
read the command line that launched it, Valgrind hides
the fact that the process is being run under analysis by
treating that open system call in a particular way instead
of interpreting it directly. The specialized rule appears
before the general rule in the file and, as explained in
§3.3, has higher precedence.

We also needed some rules with nothing as the LHS.
For instance, when the application under analysis at-
tempts to mmap a file into memory, Valgrind issues more
system calls to allocate adequate shadow memory for
that file. Given that Varan does not copy the mmap sys-
tem call to the ring buffer, we tolerated the divergence
between positions 61–65 in Figures 5a and 5b with the
following rule:
1 nothing => mmap(_), fstat(_,_,_),
2 readlink(_,_), stat(_,_), mmap(_)

Other rules with nothing as the LHS skip extra work
that Valgrind performs to schedule threads, and when the
program under analysis loads a dynamic library.

5.5 Synthesis Algorithm
All the rules described so far in the experimental eval-
uation were manually written by comparing sequences
of strace logs side-by-side, as shown in Figure 5. We
evaluated the DSL synthesis algorithm by using sim-
ilar strace logs as input, to infer the rules needed to
tolerate divergences between native and Valgrind ex-
ecutions, and comparing them with the ones that we
wrote manually. We used the workloads for Git,
OpenSSH, and VIM described in §5.4. We also used
four GNU/Linux command-line utilities: ls and du from
CoreUtils9 version 8.25, grep10 version 3.0, cal from
util-linux11 version 2.29.2, and the DSL synthesis al-
gorithm itself. The algorithm took under 22 seconds on
a modern laptop to run on each pair of traces.

9https://www.gnu.org/software/coreutils
10https://www.gnu.org/software/grep/
11https://www.kernel.org/pub/linux/utils/

util-linux/
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Table 2: Rules synthesized from pairs of native and
Valgrind strace logs, including partial and incorrect
rules due to under-represented system calls (a), over-
capture (b), or misalignment (c).

Program Rules Correct Partial Incorrect
git tag 4 4 0 0
git diff 5 4 1a 0
git log 5 5 0 0

ls 6 5 1b 0
grep 5 5 0 0
cal 4 4 0 0
du 5 4 1a 0

keygen 5 4 1b 0
ssh 9 6 1a 2c

synth 6 6 0 0
vim 11 6 2b 3c

Table 2 shows the results for the 19 different rules that
can be synthesized from these traces (this is the number
of rules before any grouping is applied). The total of
column Rules is not 19 because of duplicate rules. For
instance, let us consider that a row lists 2 rules with sys-
tem calls A and B on the LHS; and another row lists 3
rules, for system calls A, C, and D on the LHS. The total
is thus 4 rules, one for each of A, B, C, and D on the LHS.

There are 16 rules generated correctly from at least
one pair of strace logs (column Correct). In two cases,
the algorithm generates rules that have too many system
calls, as described in §4 (column Partial). For instance,
when saving a file, VIM always issues system call utime
(to get the file modification times) before setxattrs (to
set the file attributes). As a result, the synthesized rule for
setxattrs is always (incorrectly) prefixed with system
call utime.

The incorrect rules were all due to misalignment, as
explained in §4. The algorithm generated incorrect rules
only for interactive programs due to their inherent non-
determinism which affects our collection of system call
traces: OpenSSH relies on random data, from both client
and server; and VIM blinks the cursor a different number
of times between executions.

Overall, these results are encouraging: The algorithm
was able to generate most of the rules that it is designed
to synthesize, simplifying the manual effort required.

6 Limitations and Future Extensions

The DSL is already expressive enough to support all the
different scenarios that we present in this document. In
this section, we identify the main limitations that we be-
lieve will need to be addressed to apply the DSL to addi-
tional scenarios.

Greedy rule matching. Currently, rules are matched
greedily. As a result, rules cannot share a prefix of sys-
tem calls on the LHS. We plan to explore alternative se-
mantics to support this case.

Distant system call matching. Rules that match system
calls separated by a large number of uninteresting sys-
tem calls are long and require the DSL to keep all these
system calls in memory. We plan to extend the DSL to
support this scenario better.

Multithreading. In multithreaded programs, our im-
plementation for Varan uses a separate DFA per thread.
However, all DFAs use the same set of rules. Future ver-
sions of the DSL could include ways to map rules to spe-
cific threads.

Composing rules. Code blocks in the DSL cannot be
combined. We plan to explore combining DSL rules and
blocks of code, as the following example shows:
1 R1::{ return fd == 1; } R2::{ return fd == 2; }
2 nothing => write(fd,_,_) R1 || R2

Synthesizing from multiple pairs of traces. The syn-
thesis algorithm struggles with under-represented system
calls. Applying the algorithm to several pairs of traces
would result in a higher count of the rare system calls.

Synthesizing predicated rules. When the pattern for a
system call changes, the synthesis algorithm generates
wrong rules due to misalignment. The algorithm can be
extended by assigning an integer measure of confidence
to each rule, which increases as the rule matches more
system calls. After a threshold, refining yields a new rule
instead of updating the current one.

Synthesizing more rules. The DSL synthesis algorithm
only generates rules involving the original system call
on the RHS. This algorithm can be extended to consider
unmatched portions of the logs surrounded by matched
sequences. For instance, for the divergence between
lines 61–65 in Figures 5a and 5b, the rule presented in
§5.4 can be extracted by considering the surrounding
matched fstat and close in the strace logs.

7 Related Work

In this paper, we propose a DSL approach to recon-
cile system call divergences in the context of the multi-
version execution [8,12,13,18,19,22,29,34,35]. Mx [18]
performs dynamic software updates by running different
program revisions in different versions. However, Mx
can only deploy revisions that issue the same exact se-
quence of system calls; it does not tolerate any diver-
gences. Varan [19] provides limited support for tolerat-
ing system call divergences through BPF filters [23] that
rewrite the sequence of system calls. Varan was thus able
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to deploy program revisions that Mx could not. However,
the BPF filters support only a single system call on the
left-hand side, and the filters are very difficult to write by
someone not familiar with BPF. Tachyon [22] also sup-
ports rewriting the sequence of system calls between two
processes. However, it does not keep state between invo-
cations by design; and it is also limited to a single sys-
tem call on the left-hand side. Both Varan and Tachyon
do not support the reordering of several system calls on
the left to several others on the right, as we do in Fig-
ure 3b. On the other hand, the DSL we propose vastly
improves the support for reconciling divergences, allow-
ing for sophisticated rules that trigger only under certain
conditions, which keep state about the current divergence
being handled, which provide better support for complex
reordering of system calls, and which require less effort
to write given the expressiveness of the DSL.

Each DSL rule is compiled to a DFA, which resembles
how regular expressions are efficiently implemented [1].
In fact, a RHS rule without predicates or callbacks is a
regular expression for an alphabet in which each symbol
is a system call. However, adding predicates to accept
each symbol conditionally and callbacks after each sym-
bol is accepted is an important difference.

Andersen and Lawall [2] propose a DSL and an al-
gorithm for specifying and inferring generic patches to
C programs which capture the collateral evolution of li-
brary call sites when the API changes. Instead, our DSL
and synthesis algorithm operates on system call traces,
which present specific challenges and opportunities.

Bakken et al. [4] propose a DSL for describing how to
combine votes of multiple versions into a single result.
Our DSL focuses on matching, instead of combining, the
two “votes” on the recorded and replayed sides.

Techniques for synthesizing regular expressions from
examples are related to the technique we propose for gen-
erating DSL rules from strace logs. Approaches based on
genetic algorithms designed in the context of text extrac-
tion [6,7,10] are useful for generalizing the observed be-
havior to unseen examples. However, they do not match
our goal of generating rules that exactly match all ob-
served divergences. Regular expressions and DFAs can
be synthesized through techniques that require a set of
positive and negative examples [3, 9, 21, 26]. These ap-
proaches are not directly applicable because part of the
challenge of synthesizing DSL rules is to identify the
positive examples, and the concept of negative examples
does not apply directly to strace logs.

Program synthesis techniques [5,15,16,17,27] are also
related to the technique we propose for generating DSL
rules. The most relevant technique is λ 2 [15], which per-
forms an enumerative search in a loop that generates can-
didates and refines them iteratively. Our technique gen-
erates a single candidate per rule using the first match

and then refines it iteratively using the rest of the strace
log. λ 2 can generate more than one candidate, and it uses
a cost model to guide the program generation to gener-
ate a minimal cost solution. The extension we propose
of adding a metric for the confidence of a candidate and
keeping candidates above a threshold is similar.

8 Conclusion

In this paper, we have presented a simple and expres-
sive domain-specific language (DSL) to write rules to
tolerate expected divergences in the sequences of system
calls issued by different program executions. The DSL
we propose enables the deployment of multi-version ex-
ecution (MVE) systems in a wider range of scenarios. In
particular, we showed its applicability to three scenarios:
(1) running versions of the same program under different
configurations; (2) running different software releases,
and (3) running native programs together with versions
instrumented for dynamic analysis.

We report the results of an experimental evaluation for
all the scenarios by manually writing the required rules
starting from pairs of system call trace logs, obtained for
each version in isolation. In particular, we show that the
user needs no knowledge about the internals of the pro-
grams and analyses being deployed through MVE. We
provide empirical evidence of the low effort required to
identify and write such DSL rules, and we present the
design and evaluation of an algorithm to automatically
extract some of the DSL rules from such pairs of logs.

We believe that the DSL we propose, with its ability
to easily encode divergences in the sequences of system
calls issued by two executions, is an important contri-
bution that will enable exciting new research on multi-
version execution.
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