
SYMBEXNET: Testing Network Protocol
Implementations with Symbolic Execution

and Rule-Based Specifications
JaeSeung Song,Member, IEEE, Cristian Cadar,Member, IEEE, and Peter Pietzuch,Member, IEEE

Abstract—Implementations of network protocols, such as DNS, DHCP and Zeroconf, are prone to flaws, security vulnerabilities and

interoperability issues caused by developer mistakes and ambiguous requirements in protocol specifications. Detecting such problems

is not easy because (i) many bugs manifest themselves only after prolonged operation; (ii) reasoning about semantic errors requires a

machine-readable specification; and (iii) the state space of complex protocol implementations is large. This article presents a novel

approach that combines symbolic execution and rule-based specifications to detect various types of flaws in network protocol

implementations. The core idea behind our approach is to (1) automatically generate high-coverage test input packets for a network

protocol implementation using single- and multi-packet exchange symbolic execution (targeting stateless and stateful protocols,

respectively) and then (2) use these packets to detect potential violations of manual rules derived from the protocol specification, and

check the interoperability of different implementations of the same network protocol. We present a system based on these techniques,

SYMBEXNET, and evaluate it on multiple implementations of two network protocols: Zeroconf, a service discovery protocol, and DHCP, a

network configuration protocol. SYMBEXNET is able to discover non-trivial bugs as well as interoperability problems, most of which have

been confirmed by the developers.

Index Terms—Symbolic execution, network security, testing, interoperability testing

Ç

1 INTRODUCTION

IMPLEMENTATIONS of network protocols used today, such
as DNS [36], Zeroconf [44] and Dynamic Host Configura-

tion Protocol (DHCP) [14] are often prone to errors. Ambi-
guities in network protocol specifications can cause
different interpretations by developers, leading to bugs and
interoperability problems in the corresponding implemen-
tations of network services. The complexity of network pro-
tocols makes errors difficult to detect, even for well-studied
and mature protocols: errors may only manifest themselves
after complex sequences of network packets [30]. For exam-
ple, DNS server implementations that are vulnerable to
cache poisoning attacks [12] only exhibit problems in spe-
cific scenarios. The impact of such vulnerabilities can be
severe though, and the cost of fixing them can be high.

Although a large body of work has focused on finding
software errors, existing techniques have significant weak-
nesses when applied to network protocol implementations
because (i) many bugs manifest themselves only after pro-
longed operation in a production network; (ii) reasoning
about semantic errors in network protocol implementations
requires a machine-readable specification of the intended
protocol behaviour; and (iii) the state space of complex net-
work protocol implementations is large.

In this article, we describe SYMBEXNET, a new approach
that combines symbolic execution [25]—a program analysis
technique that can generate inputs that explore multiple
paths in a program—with rule-based specifications to check
automatically a network protocol implementation against
its specification and discover various types of errors, which
would be hard to detect manually.

SYMBEXNET takes as input the C source code of a network
protocol implementation and a set of rules, which define
correct and incorrect behaviour. Developers derive rules
manually from the protocol specification and express them
in a high-level packet stream language, which states invalid
patterns in the sequence of packets exchanged between a
client and a server. The language permits rules to refer to
packet header fields and their relationship within a packet
stream. Rules can be extracted easily from Request For
Comments (RFC) network protocol specifications [4], thus
encoding the externally-visible behaviour of a network pro-
tocol in terms of input and output packets.

Using symbolic execution, SYMBEXNET generates an
exhaustive set of input packets that achieve a broad and
deep exploration of the program state space. To scale up to
large protocol implementations, SYMBEXNET mixes concrete
and symbolic execution: for a broad exploration, it considers
in turn all combinations of fields as symbolic, running each
combination for a fixed amount of time. For a deep explora-
tion, in order to detect errors that require complex packet
exchanges to reach a given network protocol state, SYMBEXNET

repeatedly performs symbolic execution with additional
packets sent in multiple rounds. SYMBEXNET then natively
executes the implementation on all generated test packets
and checks whether the implementation correctly handles
them according to the specification rules.

� J. Song is with the Department of Computer and Information Security,
Sejong University, Seoul, Republic of Korea. E-mail: jssong@sejong.ac.kr.

� C. Cadar and P. Pietzuch are with the Department of Computing, Imperial
College London, London, SW7 2AZ, U.K.
E-mail: {c.cadar,prp}@imperial.ac.uk.

Manuscript received 29 Sep. 2013; revised 2 Apr. 2014; accepted 20 Apr. 2014.
Date of publication 13 May 2014; date of current version 18 July 2014.
Recommended for acceptance by A. Zeller.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TSE.2014.2323977

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 40, NO. 7, JULY 2014 695

0098-5589 � 2014 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

In addition, SYMBEXNET can use the generated test input
packets to check the interoperability of different implementa-
tions of the same network protocol. After a set of test input
packets was generated from a network implementation,
SYMBEXNET executes the packets against all available imple-
mentations and reports any differences as potential errors.

We empirically evaluate a prototype implementation of
SYMBEXNET with multiple network protocol implementa-
tions. We are able to generate high-coverage test input pack-
ets and detect low-level errors leading to crashes. We find
hard-to-detect errors that lead to incorrect protocol behav-
iour, such as generating unintended response packets for
test inputs, by using the rules derived from the protocol
specifications. Our experiments also reveal that multiple
implementations of the same protocol can behave differ-
ently resulting in interoperability problems.

In summary, the main contributions of this article are as
follows:

1) An approach that uses symbolic execution combined
with rule-based network protocol specifications to
automatically generate high-coverage test packets
and find semantic errors in network protocol imple-
mentations. Our approach enhances symbolic execu-
tion to allow it to explore network protocol
implementations efficiently: by mixing concrete and
symbolic execution and generating multiple rounds
of test input packets, it is possible to achieve both a
broad and a deep exploration of the state space,
resulting in high source code coverage of the net-
work protocol implementations.

2) Our experience implementing this approach,
together with an experimental evaluation on several
real-world network protocol implementations—
namely, five network daemons implementing the
Zeroconf and the DHCP specifications—where it
found 39 unique generic, semantic and interoperabil-
ity errors (22 for Zeroconf and 17 for DHCP).

The next section provides background information. Section
3 gives an overview of the SYMBEXNET design, explaining how it
explores the state space of network protocol implementations
and how it generates high-coverage test input packets using
symbolic execution. Section 4 describes the rules that can be
derived from network protocol specifications; Section 5 exam-
ines interoperability testing (IOT) of different protocol imple-
mentations; and Section 6 presents our experimental results
and the errors discovered. The article finisheswith a discussion
of relatedwork (Section 7) and conclusions (Section 8).

2 BACKGROUND

We start by giving some background about the operation of
network protocols (Section 2.1) and the basics of symbolic
execution for generating test cases (Section 2.2).

2.1 Network Protocols

A network can be defined as a collection of entities intercon-
nected by communication technologies that enable the
exchange of information [45]. The communicating entities
require an agreement to exchange information and such
agreements are called network protocols. The messages
exchanged by these entities are called packets, and a
sequence of packets is referred to as a a packet stream.

When a network protocol is designed, all the information
regarding methods, behaviour and packet formats are
described in documents, which form the protocol specification,
to be referenced by developers of a protocol implementation. In
UNIX and other operating systems, implementations of net-
work protocols are called network daemons.

Fig. 1 illustrates the relationship between protocol, speci-
fication and implementation. When the requirements of a
protocol P are specified, they are described in a protocol
specification S, and the specification is implemented in I.
For example, the Dynamic Host Configuration Protocol is a
network configuration protocol for devices on TCP/IP net-
works which is described in several Request For Comments
documents that form the protocol specification [1], [14]. Sev-
eral implementations of the specification exist, such as isc-
dhcp [20] and udhcp [13].

We give two examples of network protocols: Zeroconf and
DHCP. Both are widely used and implemented by different
vendors. They are used throughout the paper to demon-
strate the various problems addressed by our approach.

Zeroconf. Zero-configuration networking [10] is a net-
work discovery protocol that enables devices on an IP net-
work to configure themselves and their services
automatically and be discovered without manual interven-
tion. Zeroconf is a serverless implementation of the DNS
naming function built on top of standard DNS and uses the
same format of a DNS packet. It is used widely as part of
applications on the iOS and Android platforms.

Fig. 2 shows the packet format for DNS/ZeroConf. The
format describes different types of DNS messages, which
are processed based on the information of each field. The
format has a 12-byte fixed-length header in addition to a
variable data part reserved for “question”, “answer”,
“authority” and additional DNS information. DNS packets
also include fields with control flags.

Fig. 1. Relationship between protocol, specification and implementation.

Fig. 2. Packet format for DNS/Zeroconf.

696 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 40, NO. 7, JULY 2014

The Zeroconf protocol is defined as part of two RFC spec-
ifications: multicast DNS (mDNS) [10] and DNS-based Ser-
vice Discovery (DNS-SD) [11]. The mDNS RFC covers basic
behaviour such as probing, announcements and responses
of Zeroconf; the DNS-SD RFC describes the structure of
resource records and service discovery mechanisms.

In Zeroconf, a new network service, such as a file server
or printer, is added as follows. First, a device selects a ser-
vice instance name. It then sends a DNS packet registering a
new service to its local Zeroconf daemon. This causes the
Zeroconf daemon to send out a broadcasting DNS packet
three times to the network in order to probe if the service
name already exists. If there is no response, the daemon
starts to send a broadcasting DNS packet announcing the
new service at least twice.

DHCP. The Dynamic Host Configuration Protocol [14] is a
standard network protocol to obtain configuration parame-
ters. Network devices that are connected to IP networks must
be configured before they can communicate with other hosts.
DHCP allows a server to assign network configuration
parameters dynamically, especially the IP address, to clients.
DHCP has eight types of packets, such as DHCPDISCOVERY
and DHCPOFFER. They share the same format but can be dis-
tinguished based on the values of certain fields in the packets.

DHCP is standardised in the RFC 2131 Dynamic Host Con-
figuration Protocol [14]. The DHCP RFC describes the behav-
iour of a dynamic configuration service framework that passes
configuration information to hosts on a TCP/IP network.

Fig. 3 shows the format of a DHCP packet. The first 12
bytes of the DHCP packet are used to deliver basic informa-
tion about messages and client types, such as hardware
type and address length. After that, the format has various
fields for IP addresses that are needed to provide an avail-
able IP address to clients.

When a DHCP-enabled client is connected to the net-
work, the client sends a broadcast query packet (DHCPDIS-
COVER) requesting an IP address from a DHCP server. Any
DHCP server that receives the query may send a packet
(DHCPOFFER) offering an available IP address. The client
responds to the packet by sending a broadcast response
packet (DHCPREQUEST) accepting the offered IP address.
The server responds to the request packet with an

acknowledgement packet (DHCPACK), thus completing the
assignment process. Before leaving the network, the client
terminates the leased IP address by sending a packet that
requests to release the address to the DHCP server
(DHCPRELEASE). The server then returns the client’s IP
address to the available address pool.

For both protocols, if any step does not complete success-
fully, there are recovery actions specified by each protocol.

2.2 Symbolic Execution

The core idea behind symbolic execution [7], [8], [9], [17],
[18], [25] is to use symbolic values as input, instead of actual
data, and to represent values of program variables as sym-
bolic expressions. As the program is executed, any state-
ments that depend on the symbolic inputs are added as
symbolic constraints. When execution reaches a branch that
depends on the symbolic input, both potential paths are fol-
lowed separately, adding the constraint that the branch con-
dition is true or false, respectively.

Two pieces of information are associated with each
explored path: a symbolic map (SM) and a path condition
(PC). The SM associates symbolic values with program vari-
ables, and the PC is a first-order quantifier-free boolean for-
mula involving relations between input variables, which
expresses the conditions necessary for following that path.
When the program terminates or encounters an error, the
current PC can be solved for concrete values, which form a
test case that follows that exact path.

3 SYMBEXNET DESIGN

We propose a new approach for checking network protocol
implementations using symbolic execution and rule-based
specifications. The main idea is to generate a set of test input
packets using symbolic execution to achieve high code cov-
erage and replay them against an implementation, observing
potential violations of rules derived from the protocol speci-
fication. To overcome the challenge that network protocol
implementations often require complex packet exchanges in
order to exhibit particular behaviour that should be checked,
we devise two exploration methods, single- and multi-packet
exchange symbolic execution, that achieve broad and deep
exploration of the state space of a target implementation.

3.1 SYMBEXNET Overview

Our goal is to determine the compliance of a network proto-
col implementation with its protocol specification and the
interoperability with other implementations of the same
protocol. Our approach is simple to use, yet rigorous
enough to discover non-trivial bugs, providing an auto-
mated method to validate protocol implementations.

The SYMBEXNET design is shown in Fig. 4. When testing a
network protocol implementation with SYMBEXNET, there are
five steps, as labeled in the figure:

1) Creation of packet rules (Section 4.1). The first step is to
develop a rule-based specification from a protocol
specification. The requirements describing behaviou-
ral properties of the protocol are extracted manually
from the protocol specification and expressed in
terms of the desired input-output behaviour (i.e., the

Fig. 3. Packet format for DHCP.

SONG ET AL.: SYMBEXNET: TESTING NETWORK PROTOCOL IMPLEMENTATIONS WITH SYMBOLIC EXECUTION AND RULE-BASED... 697

set of packets). SYMBEXNET provides a packet rule lan-
guage to describe correct sequences of packets.

2) Generation of test packets (Section 3.3 and Section 3.4).
To validate as many packet rules as possible, SYMBEX-

NET generates a good set of test packets with high
code coverage. It uses symbolic execution to explore
a large number of code paths in the network protocol
implementation and, based on this, synthesises a set
of test input packets. To explore the state space
broadly, SYMBEXNET repeatedly marks parts of a
packet as symbolic. For deep exploration, it repeat-
edly performs symbolic execution on selected input
packets to generate sequences of test input packets.

3) Replay of test packets (Sections 3.3 and 3.4). The gener-
ated test packets are replayed on the original net-
work implementation. Each test packet is sent to the
implementation in a controlled network environ-
ment, and the output packets generated by the
implementation are recorded, together with the
input packets, as a packet stream.

4) Validation of packet rules (Section 4.3). The captured
input and output packets from the previous step are
validated against the rule-based specification. SYM-

BEXNET translates the specification rules into a set of
non-deterministic finite automata (NFAs). Through
analysing all captured replay packets against each
NFA, SYMBEXNET detects rule violations.

5) Checking for interoperability (Section 5). To check if
multiple implementations of the same network pro-
tocol are interoperable, SYMBEXNET applies steps (2)
and (3) to each implementation. The generated
packet streams obtained from each implementation
are replayed on all implementations. To check for
interoperability, SYMBEXNET uses specific interopera-
bility rules to compare the packets streams for dis-
crepancies, while ignoring differences that are not
semantically meaningful, such as redundant packets
or different packet orderings.

3.2 Symbolic Execution and Exploration

SYMBEXNET executes the network protocol implementation
symbolically using the KLEE [7] symbolic execution engine,
available at http://klee.llvm.org.

Symbolic data. The first decision regards the granularity at
which data is treated as symbolic. Operating at the level of
entire input packets may seem the natural choice, but this
creates a huge state space, which often causes symbolic exe-
cution to get stuck in parsing code, generating mostly
invalid packets that are discarded early by an implementa-
tion. Instead, we make use of the knowledge available from
the protocol specification and operate at the level of packet
fields. We consider in turn all combinations of fields as sym-
bolic, running each combination for a fixed amount of time.

Symbolic packet injection. To perform symbolic execution,
symbolic packets must be “injected” into the network proto-
col implementation. An important issue is to decide how to
inject symbolic packets without requiring major changes to
the implementation. When a running implementation
receives a certain real input packet from our purposely-con-
structed test client (Section 6.3), the packet is intercepted by
SYMBEXNET, which marks all or parts of it as symbolic and
starts the symbolic execution process using the symbolic
execution engine.

Once symbolic packets are injected, symbolic execution
explores as many paths as possible within a given time bud-
get. To maximise the chance of finding errors, our goal is to
achieve high coverage of the network implementation.
Below, we discuss two exploration strategies for network
protocol implementations that generate high-coverage test
input packets.

3.3 Single-Packet Exchange Symbolic Execution
(SPE-SE)

In single-packet exchange symbolic execution, SYMBEXNET per-
forms symbolic execution on a single symbolic input packet.
SPE-SE is well suited for stateless network protocols that
treat each request independently. The checking process of
SYMBEXNET using SPE-SE is composed of two tasks, test
packet generation and test packet replay:

Test packet generation. To execute a network daemon sym-
bolically, we first compile its source code to LLVM bitcode
[27], the low-level language used by the KLEE symbolic exe-
cution engine. When the LLVM-compiled daemon starts, it
behaves normally and waits for input. SYMBEXNET can then
send a specific test input packet to the daemon in order to
trigger symbolic execution. When the daemon receives this
test packet, SYMBEXNET intercepts the packet and marks
specified fields as symbolic.

For example, if the user provides an instruction to mark
the flags field as symbolic, SYMBEXNET replaces the concrete
value of this field within the packet with symbolic values
while keeping the other fields concrete. It then uses the sym-
bolic execution engine to explore possible execution paths
corresponding to the various input packets having different
flags values. At the end of each execution path, it stores the
concrete test packet for a given path on disk.

Test packet replay.Generated test packets are then executed
(“replayed”) using the native version of the implementation.
This replay process is used to check the behaviour of the
implementation against the rule-based specification and to
confirm any previously-encountered generic errors. SYMBEX-

NET executes the implementation under the same conditions
under which the test packets were generated (e.g., using the

Fig. 4. SYMBEXNET system design.

698 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 40, NO. 7, JULY 2014

same configuration parameters) so that any violations
detected during symbolic execution can be confirmed.When
the implementation executes in the configured environment,
SYMBEXNET selects a test input packet and then controls the
client so that it can send the test packet when the implemen-
tation is ready to receive it, such as after completing service
registrations. Replayed packets causing crashes of the imple-
mentation are reported during the replay process.

To validate the network protocol implementation,
SYMBEXNET records all network traffic, i.e., input and output
packets generated by the implementation and clients during
the replay. The captured traffic is used as an input to the
next step, rule validation (Section 4).

3.4 Multi-Packet Exchange Symbolic Execution
(MPE-SE)

SPE-SE is not suitable for checking stateful network protocol
implementations because the generated test packets cannot
explore code execution paths that are only reachable after
receiving more than one input packet. In order to overcome
this limitation, we propose multi-packet exchange symbolic
execution.

Motivating example. The code in Fig. 5 shows a simple
finite state machine (FSM) implementation, as used in many
network protocol implementations, such as DHCP, to han-
dle incoming packets based on previously received packets.
When such code is run by SPE-SE with a single symbolic
packet, symbolic execution cannot explore the then side of
the if statement on line 19 because the branch condition
can become true only after processing the first packet. In
general, many network protocol implementations make
decisions based not only on information contained in the
current packet but also in previously received packets.

The obvious solution to this problem is to consider multiple
packets as symbolic input. However, this approach is not
scalable because it typically increases the program search
space and the complexity of generated constraints exponen-
tially with the input size.

To alleviate this problem, MPE-SE uses a combination of
concrete and symbolic execution: it uses the currently gen-
erated sequences of packets as input for the next round of
symbolic execution, which enables it to explore deep states
of the implementation more effectively.

When processing packet k, MPE-SE alternates between
concrete and symbolic execution as follows:

1) Concrete execution. MPE-SE starts by replaying, in
turn, each sequence of k� 1 concrete packets gener-
ated before.

2) Symbolic execution. On each of the paths explored in
step (1), if the implementation waits for a kth packet,
MPE-SE marks that packet as symbolic and executes
the implementation symbolically. Otherwise, the
path is terminated.

3) Update sequence tree. The packets generated at the end
of the previous step are inserted into a sequence tree,
to be used in step (1) of the next iteration.

4) Terminate. MPE-SE finishes after a predefined num-
ber of rounds or when it cannot find a packet
sequence that increases source code coverage further.

Fig. 6 shows graphically how SPE-SE and MPE-SE com-
pare to each other.

4 RULE-BASED SPECIFICATIONS

Symbolic execution can automatically detect low-level
generic errors, such as buffer overflows or division-by-zero
errors. To discover semantic errors, we augment SYMBEXNET

with an expressive rule-based language, which can be used
to create network protocol specifications. Therefore, an
important step in using SYMBEXNET is to translate a standard
protocol specification, such as an RFC document, into a
rule-based specification.

We define behavioural violations using a rule-based lan-
guage that matches incorrect sequences of packets. We
assume that the behaviour of an implementation consists of
the output packets that it emits in response to input packets.
In this black-box approach, we do not reason about the
internal state of the implementation, which means that
some parts of the specification cannot be encoded, but has
the advantage that rules are reusable across different

Fig. 5. C program for a state machine in a typical network protocol
implementation.

Fig. 6. Program exploration for (a) SPE-SE and (b) MPE-SE.

SONG ET AL.: SYMBEXNET: TESTING NETWORK PROTOCOL IMPLEMENTATIONS WITH SYMBOLIC EXECUTION AND RULE-BASED... 699

implementations of the same protocol. This allows develop-
ers to identify and correct errors of translation and migra-
tion between different implementations of a specification.

We first show how rules are derived from specifications
(Section 4.1) and then introduce our rule-based packet
stream language (Section 4.2). We finally show how rules
are implemented and validated (Section 4.3).

4.1 Rule Extraction

A set of rules can be extracted from the text of a network
protocol specification. In many standards documents,
words such as “MUST” and “SHOULD” are used to express
requirements in the specification [5]. For example, “MUST”
(similarly to “REQUIRED” or “SHALL”) means that the
statement is an absolute requirement. We find that phrases
containing these words are good candidates for translation
into formal rules.

Consider how sentences containing such keywords can
be used to form rules. For example, we can find the follow-
ing requirement related to the “Query ID”, which is used to
identify a particular query message and a header field of a
multicast DNS packet, in the RFC defining the mDNS net-
work protocol [10]:

“In unicast response messages generated specifically in
response to a particular (unicast or multicast) query,
the Query ID MUST match the ID from the query
message.”

The requirement states how an mDNS daemon has to set
the Query ID in a response packet when answering using a
unicast packet. If the daemon does not follow this behav-
iour—for example, by selecting a random value for the ID
that does not match the ID from the query—the client may
ignore the response packet. Therefore this requirement is a
good candidate for translation into a rule.

Usually requirements to be included in protocol specifi-
cations address how to communicate with external network
entities and how to manage internal states such as cached
data, network parameters and protocol-specific data. Our
rules refer to externally observable aspects of packets,
thereby can be reused across different implementations of
the same protocol. But this means that not all phrases from
specifications can be translated into rules. For example, the
following requirement from the mDNS specification cannot
be described as a rule because it refers to internal state, i.e.,
registered services maintained by a daemon:

“A Multicast DNS Responder MUST NOT answer a
Multicast DNS Query if the answer it would give is
already included in the Answer Section [. . .]”

4.2 Rule-Based Packet Stream Language

Since our rule-based packet stream language is intended for
use by developers of network protocol implementations, it is
designed based on two requirements: expressiveness and ease
of integration with network protocols. In contrast to existing
pattern matching languages [39], it contains domain-specific
constructs to refer to packet header fields for specific net-
work protocols. It also includes a set of operators and

modifiers to express protocol-specific features such as ignor-
ing packets that do not satisfy a given filter condition.

The language uses packet expressions of the following
form:

packet expression ¼ pktfSfiltersg;

where pkt is a name given to the packet to be matched, and
Sfilters is a set of packet filter predicates. A packet filter pred-
icate represents the possible values of the corresponding
fields in packets that match this filter. We introduced some
of the fields that are part of DNS and DHCP in Figs. 2 and 3,
respectively. The set of packet filter predicates are sequen-
ces of valid packet filters joined by the logical operators
AND/OR. If multiple fields with the same name exist, the
modifiers ANY and ALL specify that a predicate has to
match at least one or all fields, respectively. Nested field
names are separated by dots.

Rule operators. To describe a sequence of exchanged pack-
ets, packet expressions are composed using operators. Spe-
cificially, rule expressions can be built recursively using
three operators: next (;), union (j) and iteration (þ):

1) The next operator p1;p2 detects the next occurrence
of packet p2 after p1, ignoring any intermediate
packets that do not satisfy the filter predicates for p2.

2) The union operator p1jp2 matches a choice of pack-
ets p1 or p2.

3) The iteration operator p +n detects n consecutive
packets p.

Variable binding. Using the variable binding operator @, fields
from previously detected packets can be stored and referenced

in subsequent filter expressions. If there exist a packet p that
previously occurred, a field name of the form @p.field refers to
the field name field of the previous packet p.

For example, the following rule shows how the variable
binding operator @ is used to refer to a specific field value:

1 queryfsrc ip !¼224:0:0:251 AND flag:QR ¼ 0x00 AND

questions !¼0x00g;
2 respfdst ip ¼ @query:src ip AND flag:QR ¼ 0x80 AND

id !¼@query:idg

Consider the packet filter of the query packet (line 1).
It matches a DNS query packet (flag.QR = 0x00) that is
not from the multicast IP address 244.0.0.251 and has
more than one question block (questions != 0x00).
The next operator (;) at the end of query ignores packets
that do not satisfy the packet filter predicates associated
with the resp packet.

In the resp packet filter (line 2), two variable bindings
are used—@query.src_ip and query.id. Both refer to
the value of the corresponding fields in the query packet.
In particular, @query.src_ip detects a packet response to
the source IP address of the query packet while query.id
discovers a packet that does not use the same ID as the
query packet.

Timeouts. It is important to reason about time when
describing packet sequences because many aspects of

700 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 40, NO. 7, JULY 2014

network protocols are driven by timers. To describe timing-
related requirements, each packet contains a virtual field
called ts that represents the timestamp at which the packet
was received. For example,

ts >¼ @query:tsþ 150

means that a rule matches a response packet with a time-
stamp that is 150ms larger than that of the corresponding
query packet.

4.3 Rule Implementation and Validation

The rules derived from a protocol specification are vali-
dated using non-deterministic finite automata. We use an
approach that is similar to ones found in event processing
systems [39]. NFAs provide a mechanism for detecting com-
plex event matches through the use of a high-level event
pattern language.

An NFA for a rule from our packet stream language
operates as follows. Each NFA state is assigned a name and
an input packet. All the outgoing edges of a state read that
input packet. Suppose that an automaton instance is in state
S with assigned packet p. Each edge, between states S and
T , is labelled with a pair hu; fi where u is a predicate, and f
is a transition function returning the next state T . Let a
packet e satisfy predicate uðp; eÞ. As a result, the NFA transi-
tions non-deterministically to the next state T , as specified
by the transition function f and stores packet p in order to
refer back to its field values later. The rule has matched suc-
cessfully after the NFA has reached an accepting state.

5 INTEROPERABILITY TESTING

This section introduces an interoperability testing method-
ology for network protocol implementations. Given two
implementations of the same network protocol, IOT per-
forms four steps, as labeled in Fig. 7:

1) Creation of IOT rules. The first step is to derive IOT
rules for interoperability testing from a protocol
specification, which compare response packets from
different implementations.

2) Generation of test packets. To check the interoperability
between two implementations, IOT relies on a set of
high-coverage test input packets that can detect

interoperability problems. These packets are generated
by applying SPE-SE and MPE-SE to each
implementation.

3) Cross-replay of test packets. The test packets generated
for each implementation are replayed on both imple-
mentations and all exchanged input and output
packets are recorded.

4) Interoperability checking. The recorded input and out-
put packets are compared using the IOT rules from
step (1). For each divergent behaviour, IOT reports a
potential interoperability error.

5.1 Rule-Based Interoperability Checking

To perform interoperability checking, we extend the rule-
based language with the ability to compare packets from
two different packet streams. Rules can include a stream
identifier that refers to a specific packet stream among mul-
tiple streams. A packet filter that is associated with a spe-
cific stream has a prefix S followed by the number of the
stream. For example, S1.p1.flags refers to the field flags

of packet p1 from stream S1. Packet filters without a
stream identifier are used as common filters, which are
applied to all streams, while packet filters with a stream
identifier are only used to select a packet from the stream
specified by the stream identifier.

Packet field comparison. Developers can build a set of IOT
rules that compare the value of each field in response pack-
ets and detect discrepancies. Such rules, however, may not
discover interoperability problems robustly because some
packet fields are permitted to have any value within an
acceptable range. For example, the DHCP specification per-
mits the lease duration to vary between zero and infinity,
and administrators select a given value based on their pol-
icy. Therefore IOT rules permit to ignore such differences.

Interoperability decision criteria. For a test input packet p
sent to both implementations IUT-A and IUT-B, IOT reports
PASS as a result if both IUT-A and IUT-B generate no
response packet or equivalent response packets, and FAIL
otherwise. Equivalence between response packets is deter-
mined using the IOT rules created in step (1).

6 EVALUATION

The goal of the evaluation is to demonstrate the suitability
of SYMBEXNET as an efficient tool for finding implementa-
tion flaws in real-world network protocol implementa-
tions. We apply SYMBEXNET to five network protocol
implementations and show that it generates high quality
sequences of test packets to check the correctness of net-
work protocol implementations, as well as their interoper-
ability with other implementations.

This section is organised as follows. Section 6.1 describes
the objectives and methodology for evaluating SYMBEXNET,
and Section 6.2 discusses how we derived rules from proto-
col specifications. The environmental set-up used for the
experiments is described in Section 6.3. The experimental
results on single-packet exchange symbolic execution,
multi-packet exchange symbolic execution and interopera-
bility testing are presented in Sections 6.4, 6.5, and 6.6,
respectively. Finally we discuss the detected violations in
Section 6.7.

Fig. 7. Overview of checking interoperability for implementations under
test IUT-1 and IUT-2 of the same network protocol using SYMBEXNET.

SONG ET AL.: SYMBEXNET: TESTING NETWORK PROTOCOL IMPLEMENTATIONS WITH SYMBOLIC EXECUTION AND RULE-BASED... 701

6.1 Objectives and Methodology

We apply SYMBEXNET to network daemons implementing
the Zeroconf [10], [11] and the DHCP [14] specifications. A
system such as SYMBEXNET can be evaluated in terms of the
quality of generated test packets and its ability to detect
implementation bugs. To show the quality of test input
packets, we measure the source code coverage achieved
by the generated packets. The bug detection ability is eval-
uated by validating network protocol implementations
against their protocol specifications and detecting interop-
erability flaws.

The evaluation addresses the following questions:

1) How easy is it to use SYMBEXNET to derive packet
rules from protocol specifications? (Section 6.2)

2) Does SYMBEXNET generate effective test input packets
(or sequences) that achieve a broad and deep explo-
ration of the program state space using symbolic exe-
cution? (Sections 6.4 and 6.5)

3) Does SYMBEXNET provide an effective way to check
interoperability of network daemons? (Section 6.6)

4) Does SYMBEXNET detect various types of non-trivial
implementation bugs? (Section 6.7)

The five network protocol implementations tested are
summarised in Table 1. We investigate three different
implementations of Zeroconf: Avahi 0.6.231, Apple’s Bon-
jour 107.62 and JmDNS 3.4.1.3 Avahi has about 7,000 lines
of code in 31 C files, and Bonjour has about 8,000 lines of
source code in 10 C files for its Linux version. JmDNS is a
Java implementation of Zeroconf, and currently the only
available Zeroconf server that can be used on the Android
platform. Since JmDNS is written in Java, we cannot run it
using SYMBEXNET but we use it for interoperability checking.

For DHCP, we use two different implementations:
udhcp 0.9.9-pre4 and ISC’s isc-dhcp 2.0.5 Both udhcp

and isc-dhcp are open-source DHCP implementations,
and their source code has been thoroughly tested. udhcp
has about 1,200 lines of code in 12 C files, and isc-

dhcp has about 3,000 lines of code in 15 C files.

6.2 Rule Derivation

We manually derived a set of rules from the specifications
of the Zeroconf and DHCP protocols by following the pro-
cess described in Section 4.1. Our rule derivation for Zero-
conf and DHCP resulted in a total of 25 and 29 rules,

respectively. In Table 2, we show the result of the rule deri-
vation from the specifications of both protocols. After
becoming familiar with the process of developing rule-
based specifications through the experience with the mDNS
specification, it took around 3-4 hours to analyse the DHCP
specification and to derive the DHCP packet rules.

Zeroconf. As explained in Section 2, the Zeroconf protocol
is defined in two specifications: multicast DNS and DNS-
based Service Discovery. To obtain a set of packet rules, we
examined both specifications to find phrases that contain
the keywords from Section 4.1. As shown in Table 2, we
found 110 phrases: 79 phrases with a MUST keyword, 29
with MUST NOT and two with SHALL/SHALL NOT.

Not all of these phrases can be translated into rules—we
translated successfully 29 phrases based on MUST, four
phrases based on MUST NOT and none of the phrases with
SHALL/SHALL NOT. Some statements are purely informative
and some contain environmental requirements such as the
interfaces that must be supported. Any phrases referring to
the internal state of the daemon, such as the cache main-
tained by the Zeroconf daemon, have to be ignored. Finally
some phrases that are used to describe the same requirement
are combined into a single rule. In total, we obtained a speci-
ficationwith 25 rules based on 33 valid phrases.

DHCP. After following the same rule derivation proce-
dure, we found 118 phrases in total (72 with MUST and 46
with MUST NOT), from which we created 23 rules. Most
untranslated phrases are related to requirements describing
the behaviour of DHCP clients. Since we do not check clients
but server implementations, any statements that are not
related to the DHCP daemon are ignored. While analysing
the specification, we found an additional seven phrases stat-
ing absolute requirementswithout the above keywords. Since
these phrases specify how the DHCP daemonmust construct
response packets, we derived rules from these phrases too.

6.3 Experimental Set-Up

The general experimental set-up involves two nodes: a net-
work daemon to be tested and a test client. We extend simple
clients written in C (for Zeroconf) and in Python (for DHCP)
with the ability to send regular mDNS/DHCP packets, as
well as manually crafted packets that instruct SYMBEXNET to
mark some fields as symbolic. To emulate a typical environ-
ment, the client registers six services with the daemon.

To control network traffic during test packet generation
and replay, all experiments are done as part of an isolated

TABLE 1
Network Daemons Tested Using SYMBEXNET

Protocol Daemon Version Language # LOC # Files

Zeroconf Avahi 0.6.23 C 7,000 31
Bonjour 107.6 C 7,900 10
JmDNS 3.4.1 Java 2,000 9

DHCP isc-dhcp 2.0 C 3,000 15
udhcp 0.9.9-pre C 1,200 12

TABLE 2
Rules Derived from Specifications

Zeroconf: 25 rules1 DHCP: 29 rules1

Keyword # Total # Translated # Total # Translated

MUST 79 29 72 8
MUST NOT 29 4 46 15
SHALL
(& NOT)

2 0 0 0

Others2 0 0 7 7

1This number is smaller than the total number of translated rules, as some
rules are combined together.
2These are phrases signifying absolute requirements but which don’t use any of
the keywords above.

1. http://www.avahi.org.
2. http://developer.apple.com/opensource.
3. http://jmdns.sourceforge.net/.
4. http://busybox.net.
5. http://www.isc.org/software/dhcp.

702 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 40, NO. 7, JULY 2014

test network. We configure the daemons to use the loop-

back (lo) interface under Linux, which ensures that they
receive only packets from an isolated network.

To validate the network daemon, SYMBEXNET captures all
network traffic generated by the daemon and clients during
the replay on the network interface. For this, SYMBEXNET

uses libpcap [28], a portable packet capture library.
We conduct all experiments on a 2.4 Ghz Intel Core 2 Duo

machinewith 2 GB of RAM running 32-bit Ubuntu Linux.

6.4 Single-Packet Exchange Symbolic Execution

Next we describe the experiments that check stateless net-
work protocol implementations using SPE-SE.

Test packet generation. As discussed in Section 3.2, an open
challenge is to decide how many fields to treat as symbolic.
Choosing too few fields may explore too little of the search

space, but choosing too many (e.g., all) may result in too
many paths, most of which would refer to invalid packets
that are discarded early by an implementation. As a result,
we treat as symbolic, in turn, all combinations of fields, and
for each combination, run symbolic execution with a fixed
timeout. To determine an appropriate timeout value for
each protocol, we first try a subset of all possible combina-
tions. In particular, we start by making only the first field of
a packet symbolic, and then progressively also make subse-
quent fields symbolic, until all fields are considered.

For the mDNS daemons, we start with the ID field as the
only symbolic field, run symbolic execution to generate input
test packets and then progressively mark more fields as sym-
bolic, until all 12 fields in the DNS packet are symbolic. By
default, one test packet is generated for each path that is
explored. To avoid unnecessarily generating a large number of
packets, SYMBEXNET configuresKLEE to generate only test pack-
ets for paths that cover new statements in the source code.

For each combination, we explore different timeout val-
ues for the symbolic execution. Fig. 8 shows, for Bonjour,
(a) the number of explored paths and (b) the number of gen-
erated test packets as we increase the number of symbolic
packet fields and use different timeout values. These results
show that a 50 s timeout value offers a good tradeoff
between running time and the number of generated test
packets. With a 10 s timeout, SYMBEXNET generates signifi-
cantly fewer test packets. Increasing the timeout to one
hour, however, does not significantly increase the number
of generated packets (i.e., SYMBEXNET generates many more
paths but these do not cover additional lines of code).
Therefore we use a 50 s timeout value in all of our subse-
quent Bonjour and Avahi experiments.

We run similar experiments for the udhcp daemon, and
present our results in Figs. 8c and 8d. (Note that in some
cases, the non-determinism in KLEE leads to the generation
of slightly fewer packets for a longer timeout value.) Here
we find that a 500 s timeout value offers a good tradeoff
between the time needed and the number of generated
packets, which we therefore use in subsequent experiments.

Next we try all 4,095 possible combinations of symbolic
fields for multiple implementations of Zeroconf, with a 50 s
timeout. Comparing the number of generated test packets
for different packet field combinations helps us understand
how each packet field is handled by the implementation.
For Bonjour, SYMBEXNET generates 32,069 test packets with
a total execution time of around 22 hours, while for Avahi
34,047 test packets in around 31 hours.

For DHCP, we similarly try all 1,023 possible combina-
tions, with a 500 s timeout. SYMBEXNET generates 16,777 test
packets in 26 hours for udhcp, and 14,271 test packets in 27
hours for isc-dhcp, with a 500 s timeout value.

For both Zeroconf and DHCP, the two daemons generate
similar numbers of test packets. This suggests that the dae-
mons of the same protocol are, as expected, not that differ-
ent in the way that they handle input packets.

Line coverage results. We use line coverage to measure the
quality of test packets generated by symbolic execution.
Coverage is measured by replaying the generated packets
under the gcov tool, which is part of the GNU GCC com-
piler suite [29]. We exclude library files from the coverage
measurements.

Fig. 8. Number of completed paths and generated test packets with vari-
ous symbolic execution timeout values for Bonjour and udhcp with dif-
ferent numbers of symbolic fields.

SONG ET AL.: SYMBEXNET: TESTING NETWORK PROTOCOL IMPLEMENTATIONS WITH SYMBOLIC EXECUTION AND RULE-BASED... 703

Table 3 shows the line coverage results for the four dae-
mons. As a baseline, we also compute for each daemon the
coverage of n packets randomly generated using the Dis-
tributed Internet Traffic Generator (D-ITG) [3], where n is set
to the same number of packets as generated by SYMBEXNET

(i.e., 32,069 for Bonjour, 34,047 for Avahi, 16,777 for
udhcp and 14,271 for isc-dhcp, respectively). The total
execution time is 12.3 hours for Bonjour, 13.1 hours for
Avahi, 4.6 hours for udhcp and 3.8 hours for isc-dhcp,
respectively.

We perform 10 such experimental runs for each dae-
mon, and calculate the average coverage value. Since we
perform the random testing with a large number of pack-
ets, the average coverage value does not change across
runs. Furthermore, the same coverage is achieved even
when we compute the cumulative coverage for all 10
experiments (i.e., for a total of 10n random packets).

For Bonjour, the randomly-generated packets cover
48 percent of the code, while SymbexNet covers 61.5 per-
cent. Note that, fundamentally, our test scenario cannot
cover 28 percent of the source code: in addition to DNS
response/request packets, the daemon accepts service regis-
trations from DNS-SD clients, which are not explored sym-
bolically in our experiments: about 15 percent of the source
code is used to handle such requests; another 13 percent
implements other features, such as cache maintenance and
name conflict resolution.

For Avahi, the coverage difference is similar: the ran-
domly-generated tests achieve 63 percent coverage, while
SYMBEXNET achieves 75 percent. Around 22 percent of the
code cannot be covered in our test scenario.

For DHCP, SYMBEXNET generates test packets that cover
67 and 79 percent for isc-dhcp and udhcp, respectively,
while the randomly-generated packets only cover 36 and
60 percent, respectively. About 31 percent (isc-dhcp) and
16 percent (udhcp) of the source code cannot be covered
in our testing scenario because it relates to BOOTP packet
handling, static IP address allocation and unsupported
server configurations. Since isc-dhcp is larger, containing
additional features such as DNS lookup, SYMBEXNET

achieves lower source code coverage than for udhcp.

6.5 Multi-Packet Exchange Symbolic Execution

In this section, we evaluate the effectiveness of multi-packet
exchange symbolic execution. Since MPE-SE is targeted
towards stateful network protocols, we focus our evaluation
on DHCP.

Test sequence generation. As described in Section 2, the
state machine of DHCP is built around the life cycle of a
dynamically assigned IP address between a DHCP client
and a daemon, and involves three input packets received by
the DHCP daemon from the client.

Consequently, we run both udhcp and isc-dhcp with
three symbolic DHCP input packets of size 548 bytes, the
maximum length of a DHCP packet. We use 120mins
(udhcp) and 60mins (isc-dhcp) as timeout values for
each MPE-SE round, respectively, in order to generate input
sequences within one day. With these timeout values,
udhcp and isc-dhcp generate a total of 286 and 595
unique test sequences, respectively.

Line coverage results. As a baseline, we measure the cover-
age achieved by a DHCP conformance test suite that checks
the functional correctness of the DHCP daemon [14], [48].
The test suite is rather minimal, but it checks that the dae-
mon behaves correctly in the standard IP assignment sce-
nario discussed in the DHCP specification.

To compare MPE-SE with SPE-SE, we also generate test
packets with an extended timeout value in the first round
and measure the coverage. We choose a timeout value of
16.9 hours—the same time used to perform MPE-SE on
three symbolic packets.

Table 4 shows the coverage results for the conformance
test, each MPE-SE round, and SPE-SE. The test packet
sequences generated after the second MPE-SE round
achieve higher line coverage than the sequences generated
after the first MPE-SE round. Since the daemons in our
experiments release the session after they receive the third
DHCPRELEASE packet, coverage between the second and
third round of MPE-SE does not increase.

The last column shows the combined coverage of all
SYMBEXNET experiments, which is greater than that of any
individual experiment. This means that our two symbolic
execution methods, MPE-SE and SPE-SE with longer execu-
tion times, can be effectively combined to achieve higher
overall coverage.

6.6 Interoperability Testing

Next we explore the effectiveness of SYMBEXNET for finding
interoperability issues between multiple implementations
of the same protocol. For this, we use the previously gener-
ated test packets from two implementations of Zeroconf
(Avahi and Bonjour) and DHCP (udhcp and isc-dhcp).

SYMBEXNET checks whether the daemons generate consis-
tent response packets for a given set of test input packet.
Any deviations are reported as potential interoperability

TABLE 3
Line Coverage for the Daemons Using Randomly-Generated

Packets and SPE-SE

Daemon # files Total
LOC

Random
cov.

SPE-SE

pkts Cov.

1 Avahi 31 7K 63% 34,047 75%
2 Bonjour 10 7.9K 48% 32,069 61.5%
3 isc-dhcp 15 3K 36% 16,777 67%
4 udhcp 12 1.2K 60% 14,271 79%

TABLE 4
Line Coverage for the DHCP Daemons Using MPE-SE

Daemon Conform.test 1st MPE-SE 2nd MPE-SE 3rd MPE-SE SPE-SE Combined

udhcp 67% 72% 76% 76% 76% 79%
isc-dhcp 60% 69% 71% 71% 70% 73%

704 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 40, NO. 7, JULY 2014

bugs. To eliminate false positives, a list of IOT rules are
derived from the protocol specifications (see Section 5). We
create 8 and 9 interoperability testing rules for Zeroconf and
DHCP, respectively.

Fig. 9a shows the results of interoperability checking for
the three Zeroconf daemons. The daemons ignore 60,066
test packets (out of 66,116) because the packets are mal-
formed. As all daemons exhibit the same behaviour, these
cases do not incur interoperability problems. On the other
hand, there are several cases in which (1) only two of them
respond (Avahi/Bonjour: 1,529 packets; Avahi/JmDNS:
65 packets; Bonjour/JmDNS: 58 packets); and (2) only one
daemon responds (Avahi: one packet; Bonjour: six pack-
ets; JmDNS: 1,201 packets).

Fig. 9b shows the response behaviour of the two DHCP
daemons for all test input packets. Neither isc-dhcp nor
udhcp generate response packets for 25,206 test packets
(out of 31,048). There are 841 cases in which only isc-dhcp

responds, and six cases in which only udhcp responds.
Some of these inconsistent cases are caused by recom-

mended requirements and ranges of field values from the
protocol specification. Using our packet rules for interopera-
bility testing, we eliminate these inconsistencies and detect
25 genuine problems that indicate interoperability issues, as
described below.

6.7 Discovered Implementation Errors

We summarise the detected bugs and classify them accord-
ing to three classes based on the method that is used to dis-
cover them: generic bugs (GB), semantic bugs (SB) and
interoperability bugs (IB). These bugs are discovered using
generic error checks during symbolic execution (GB), rule-
based analysis (SB) and interoperability testing (IB). Eleven

of the detected bugs using packet rules are also detected by
interoperability testing.

As shown in the last row of Table 5, SYMBEXNET detects 39
unique bugs in the five tested network daemons. Most of
these bugs have been confirmed and fixed by the developers.
More specifically, SYMBEXNET detects four bugs in Avahi, 4

Fig. 9. Venn diagrams with packet numbers when checking responses
for Zeroconf and DHCP.

TABLE 5
List of All Detected Generic Bugs, Semantic Bugs

and Interoperability Bugs

G
B

S
B IB Bug Description

1
p

Vulnerability caused by source port number
zero

2
p p

Generated wrong answer RR fields
3

p p
Generated wrong additional RR fields

4
p

Response to a query with port number 5351

5
p

Source port 0 vulnerability
6

p p
Incorrect behaviour for a query (non-zero
RCODE)

7
p p

Missing records in query packets
8

p
Query with wrong additional RR is not
ignored

9
p p

Incorrect response for a query with unknown
class

10
p

Missing desired behaviour for OPCODE
11

p
Wrong TTL value for PTR record

12
p

Wrong TTL value for TXT record
13

p
Wrong TTL value for SRV record

14
p

Response to a query with port number 5351
15

p p
Query with non-zero response code is not
ignored

16
p p

Query with server status request is not ignored
17

p p
Query with non-authenticated flag is not
ignored

18
p p

Query with wrong additional RR is not
ignored

19
p p

Query with wrong answer RR is not ignored
20

p p
Query with unknown class is not ignored

21
p p

Generated wrong answer RR fields
22

p p
Generated wrong additional RR fields

23
p

Out of bound ptr error (options.c at line 79)
24

p
Out of bound ptr error (options.c at line 94)

25
p

Out of bound ptr error (options.c at line 99)
26

p
Out of bound ptr error (options.c at line
111)

27
p

Four bytes read overflow (dhcpd.c at line
213)

28
p

Four bytes read overflow (dhcpd.c at line
214)

29
p

Out of bound ptr error (dhcpd.c at line 319)
30

p
Out of bound ptr error (serverpacket.c at
line 113)

31
p

Out of bound ptr error (serverpacket.c at
line 119)

32
p

Failed to send DHCPOFFER to gateway server
33

p
Incorrectly generated DHCPOFFER

34
p

Incorrectly ignored DHCPREQUEST

35
p

Incorrect response to unicast address

36
p

Out of bound pointer error (conflex.c at line
114)

37
p

Out of bound pointer error (dhcp.c at line
205)

38
p p

Missing requirement for the broadcast bit
39

p
Incorrect response to broadcast address

39 13 15 25 There are 14 shared bugs

SONG ET AL.: SYMBEXNET: TESTING NETWORK PROTOCOL IMPLEMENTATIONS WITH SYMBOLIC EXECUTION AND RULE-BASED... 705

bugs in Bonjour, 14 bugs in JmDNS, 13 bugs in udhcp and
four bugs in isc-dhcp. The table provides a complete list of
all detected bugs for each bug class with their descriptions.
We discuss one error of each type below.

Violation 1 (Generic bug): Vulnerability caused by source port
number zero. When SYMBEXNET marks the source port field as
symbolic, it generates test packets with the following four
values: 0, 2, 5,351 and 5,353. All these port numbers are
used as well-known ports—e.g., port 5353 is assigned to
mDNS. According to the mDNS specification, a query must
be sent as a multicast packet from port 5353 or as a unicast
packet from a random port number. If the source port in a
received query is not 5353, the daemon should consider the
packet to be a unicast query and generate a conventional
unicast response, for example, by repeating the query ID
and sending a response to that source port. Therefore we
expect the daemons to reply with a response packet to all
port numbers without errors. However, we detect abort
errors in Bonjour and Avahi. Both errors are caused by
the source port number of a query packet.

When a packet with source port 0 is received, the dae-
mons abort due to an assert statement violation. There-
fore sending a crafted packet to a multicast address
(224.0.0.251) terminates all Bonjour daemons in the net-
work that have an answer to the query. Such a packet also
aborts Avahi daemons. This occurs regardless of the exis-
tence of a response packet because the assertion is located
in a function that handles any received packets.

We have reported this bug to Apple who confirmed it.
The latest version of Bonjour as of this writing (version
320.5.1) does not exhibit the problem any more. The bug in
Avahi was detected by the developers, and a patch was
applied to version 0.6.28.

Violation 2 (Semantic bug): Incorrect response for unknown
record class. When a Zeroconf daemon receives a query
packet asking for a specific service, it must compare three
values (name, type and class) against its records. The
daemon only responds to a query packet when it has a
record with the same values for all three fields. This require-
ment is stated in the specification:

“The record name must match the question name, the
record rrtype must match the question qtype unless the
qtype is ANY (255) or the rrtype is CNAME (5), and
the record rrclass must match the question qclass unless
the qclass is ANY (255)” [10].

From this statement, we derive the following rule:

1 query{src_port != 5353 AND dst_port = 5353 AND flag.

QR = 0x00} ;

2 resp {dst_port = @query.src_port AND flag.QR = 0x80

AND data.answer(class != ’ANY’ AND class !=

@query.question.class)}

The class field states the value of services that define the
protocol type. The normal value is ”IN”, which refers to the
Internet protocol. When SYMBEXNET marks the class field
as symbolic, we obtain the following two test packets: ”IN”
(Internet) and ”0x00” (unknown type). Both Bonjour and
Avahi respond only to the query with class value ”IN”,

which is the correct behaviour. JmDNS, however, incorrectly
sends a response even when it receives a query with an
unknown class value. This can give incorrect service infor-
mation to clients, which may in turn send further unneces-
sary queries.

Violation 3 (Interoperability bug): Incorrect response to broad-
cast address. The DHCP specification states the following
about responding to unicast addresses:

“If the broadcast bit is not set and ‘giaddr’ is zero and
‘ciaddr’ is zero, then the server unicasts DHCPOFFER
and DHCPACK messages to the client’s hardware
address and ‘yiaddr’ address.” [14]

SYMBEXNET generates a test DHCPDISCOVER packet with
both giaddr and ciaddr addresses set to zero and the
broadcast bit not set. In this case, the server receiving this
DHCPDISCOVER packet is supposed to respond with a
DHCPOFFER message to the client’s hardware address and
yiaddr address. However, when the isc-dhcp daemon
receives such a test packet, it responds incorrectly with a
DHCPOFFER message to the broadcast address
255.255.255.255. In contrast, the udhcp daemon cor-
rectly sends a DHCPOFFER message to the client’s hardware
address and yiaddr address.

7 RELATED WORK

To reason about the correctness of network protocols, prior
work has employed a variety of program analysis techni-
ques, such as model checking [15], [21], [35], [41], [43], static
analysis [16], [46], [49], theorem proving [50], and refine-
ment checking [2].

While some of these techniques can provide formal cor-
rectness guarantees, they typically require substantial
manual effort (e.g., building an abstract model in model
checking or guiding a theorem prover) or have false posi-
tives (e.g., due to imprecision in static analysis). In con-
trast, our packet matching rules are a lightweight
approach for formally specifying network protocol behav-
iour. They permit symbolic execution to reason precisely
about the actual implementations of a network protocol
without false positives (but can only make guarantees
about the paths that are explored).

Symbolic execution was used in the past to check net-
work server implementations [8], but this considered only
single input packets and focused on generic errors, ignor-
ing protocol semantics. In the context of distributed proto-
cols, symbolic execution was used to find semantic bugs
via distributed assertions [38], which are extensions of
standard C-like assertions that are added at the code level
to check predicates on distributed node states. Instead our
RFC-derived rules are designed to be independent of the
implementation, operating at the level of input/output
packet streams.

The idea of mixing concrete and symbolic execution was
explored in prior work, e.g. by combining symbolic execu-
tion with random testing [32] or with well-formed inputs
[18], including entire manual test suites [22], [34]. This is
similar to our MPE-SE approach—it exploits the advantages
of mixing concrete and symbolic execution, targeting state-
ful network protocols.

706 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 40, NO. 7, JULY 2014

Interoperability testing is an established technique in the
context of network protocols [19], [23], [26], [31], [40], [47].
SYMBEXNET enhances interoperability testing by exploiting
high-coverage test cases derived via symbolic execution
and employing rules to remove false positives.

Rule-based analysis has seen adoption for the validation of
network protocol implementations and the detection of
intrusions and vulnerabilities [24], [37]. Tools such as Pista-
chio [46] define network rules, which describe what should
happen when an implementation receives a packet, as
derived from a specification. Such systems bridge the gap
between specifications and implementations, but they
achieve only low code coverage and struggle to detect rare
errors because their rules are limited to single-packet
exchanges. SYMBEXNET uses symbolic execution to increase
code coverage and provides a rule-based packet stream lan-
guage. While Pistachio’s language could be used with
SYMBEXNET, our packet rules can describe more complex
sequences of packets compared to Pistachio’s single input/
output patterns. Furthermore SYMBEXNET can detect interop-
erability problems, which is not supported by other
approaches including Pistachio.

Event processing systems can detect complex event pat-
terns using pattern matching techniques, e.g. state automata
[6] or event trees [33]. They use high-level query languages
that are designed to support event pattern matching. In
these systems, NFAs are the most widely used method to
implement queries for detecting occurrences of specific pat-
terns. As they provide sufficient expressiveness for detect-
ing complex sequences, we also use NFAs to find violations
in packet rules. Our rule-based packet stream language is
similar to the one used by the NextCEP system [39] but is
extended with primitives suitable for describing network
packet exchange patterns.

8 CONCLUSIONS

We described SYMBEXNET, a practical approach for checking
network protocol implementations. It uses packet rules
derived from protocol specifications and input packets gen-
erated using symbolic execution to discover violations in
real-world network daemon implementations as well as
interoperability problems. To explore complex sequences of
packet exchanges, SYMBEXNET uses an exploration technique
(MPE-SE) that repeatedly performs symbolic execution on
selected test packets. To check interoperability, it observes
behavioural differences between implementations of the
same network protocol.

We implemented SYMBEXNET and validated it on multiple
implementations of two network protocols: Zeroconf and
DHCP. SYMBEXNET successfully detected a total of 39 non-
trivial errors in the evaluated implementations, most of
which have been confirmed and fixed by developers.

Our experience with SYMBEXNET has yielded several
insights. Many of the detected violations are caused by dif-
ferent interpretations of the same specification. Since ambi-
guities may lead to problems such as incorrect
functionality, interoperability errors and security vulner-
abilities, it is important to eliminate and detect them from
specifications and implementations. By translating textual
specifications such as RFCs into rule-based ones, one can

eliminate such ambiguities. Since rules only need to be
extracted from a specification once, this can be done by
domain experts who can resolve ambiguities correctly. For
example, we believe that a large part of current RFCs could
be written in such a form, enabling the use of automated
techniques such as SYMBEXNET.

We generated test packets from both Avahi and
Bonjour and replayed them against the JmDNS daemon,
which resulted in the discovery of a range of violations. SYM-

BEXNET can thus be used to check network implementations
whose source code is not available, as long as appropriate
test packets have been generated by other implementations
of the same network protocol. When networks run legacy
daemons without available source code, such a behavioural
checking technique that does not depend on source code
can be a practical solution.

Unlike stateless network protocol implementations,
stateful implementations that exchange a series of packets
to perform a task are more difficult to check. MPE-SE, our
approach for performing symbolic execution repeatedly on
selected symbolic inputs, allows stateful implementations
to reach deep execution paths that can only be explored
after exchanging a sequence of specifically ordered packets.

ACKNOWLEDGMENTS

Thework reported in this article has formed part of the Flexi-
ble Networks area of the Core 5 Research Programme of the
Virtual Centre of Excellence inMobile & Personal Communi-
cations, Mobile VCE (www.mobilevce.com), and has been
jointly funded by Mobile VCEs industrial member compa-
nies and theUKGovernment, via the Engineering and Physi-
cal Sciences Research Council. This article is partly based on
a paper published in the International Conference on Com-
puter CommunicationNetworks (ICCCN 2011)[42].

REFERENCES

[1] S. Alexander and R. Droms. (1997, Mar.). IETF RFC 2132: DHCP
options and BOOTP vendor extensions. [Online]. Available:
http://www.ietf.org/rfc/rfc2132.txt

[2] R. Alur and B.-Y. Wang, “Verifying network protocol implemen-
tations by symbolic refinement checking,” in Proc. 13th Int. Conf.
Comput. Aided Verification, 2001, pp. 169–181.

[3] S. Avallone, S. Guadagno, D. Emma, A. Pescape, and G. Ventre,
“D-ITG distributed internet traffic generator,” in Proc. 1st Int.
Conf. Quantitative Eval., 2004, pp. 316–317.

[4] S. Bradner. (1996, Oct.). IETF RFC 2026: The internet standards process—
Revision 3. [Online]. Available: http://www.ietf.org/rfc/rfc2026.txt

[5] S. Bradner. (1997, Mar.). IETF RFC 2119: Key words for use in RFCs
to indicate requirement levels. [Online]. Available: http://www.ietf.
org/rfc/rfc2119.txt

[6] L. Brenna, A. Demers, J. Gehrke, M. Hong, J. Ossher, B. Panda, M.
Riedewald, M. Thatte, and W. White, “Cayuga: A high-perfor-
mance event processing engine,” in Proc. ACM SIGMOD Int. Conf.
Manage. Data, 2007, pp. 1100–1102.

[7] C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted and auto-
matic generation of high-coverage tests for complex systems pro-
grams,” in Proc. 8th USENIX Conf. Operat. Syst. Des.
Implementation, 2008, pp. 209–224.

[8] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler,
“EXE: Automatically generating inputs of death,” in Proc. 13th
ACM Conf. Comput. Commun. Security, 2006, pp. 322–335.

[9] C. Cadar, P. Godefroid, S. Khurshid, C. S. P�as�areanu, K. Sen, N.
Tillmann, and W. Visser, “Symbolic execution for software testing
in practice: Preliminary assessment,” in Proc. 33rd Int. Conf. Softw.
Eng., 2011, pp. 1066–1071.

SONG ET AL.: SYMBEXNET: TESTING NETWORK PROTOCOL IMPLEMENTATIONS WITH SYMBOLIC EXECUTION AND RULE-BASED... 707

[10] S. Cheshire and M. Krochmal. (2010, Mar.). IETF internet draft:
Multicast DNS. [Online]. Available: http://files.multicastdns.org/

[11] S. Cheshire, M. Krochmal, and Apple Inc. (2010, Mar.). IETF Inter-
net Draft: DNS-based service discovery. [Online]. Available:
http://tools.ietf.org/html/draft-cheshire-dnsext-dns-sd-06.txt

[12] Dan Kaminsky. (2008). Black Ops 2008—Its the end of the cache as we
know it, Black Hat USA. [Online]. Available: http://www.doxpara.
com/DMK BO2K8.ppt

[13] R. Dill and M. Ramsay. (2002). Udhcp client/server package (2002).
[Online]. Available: http://udhcp.busybox.net/

[14] R. Droms. (1997, Mar.). IETF RFC 2131: Dynamic host configuration
protocol. [Online]. Available: http://www.ietf.org/rfc/rfc2131.txt

[15] M. Duflot, M. Kwiatkowska, G. Norman, D. Parker, S. Peyronnet,
C. Picaronny, and J. Sproston, “Practical applications of probabi-
listic model checking to communication protocols,” in Handbook of
Formal Methods in Industrial Critical Systems, Wiley-IEEE Press,
USA, 2010.

[16] N. Feamster, “Practical verification techniques for wide-area
routing,” SIGCOMM Comput. Commun. Rev., vol. 34, pp. 87–92,
Jan. 2004.

[17] P. Godefroid, N. Klarlund, and K. Sen, “DART: Directed auto-
mated random testing,” in Proc. ACM SIGPLAN Conf. Program.
Lang. Des. Implementation., 2005, pp. 213–223.

[18] P. Godefroid, M. Y. Levin, and D. A. Molnar, “Automated white-
box fuzz testing,” in Proc. 15th Netw. Distrib. Syst. Security Symp.,
Feb. 2008, pp. 151–166.

[19] R. Hao, D. Lee, R. K. Sinha, and N. Griffeth, “Integrated system
interoperability testing with applications to VoIP,” IEEE/ACM
Trans. Netw., vol. 12, no. 5, pp. 823–836, Oct. 2004.

[20] Internet Software Consortium. (2004, Nov.). ISC DHCP. [Online].
Available: http://www.isc.org/software/dhcp

[21] S. Islam, M. Sqalli, and S. Khan, “Modeling and formal verifica-
tion of DHCP using SPIN,” Int. J. Comput. Sci. Appl., vol. 3, pp.
145–159, Jun. 2006.

[22] P. Joshi, K. Sen, and M. Shlimovich, “Predictive testing: Amplify-
ing the effectiveness of software testing,” in Proc. 6th Joint Meeting
Eur. Softw. Eng. Conf. ACM SIGSOFT Int. Symp. Foundations Softw.
Eng., Sep.2007, pp. 561–564.

[23] S. Kang, J. Shin, and M. Kim, “Interoperability test suite deriva-
tion for communication protocols,” Comput. Netw., vol. 32, pp.
347–364, Mar. 2000.

[24] G. Khanna, P. Varadharajan, and S. Bagchi, “Self checking net-
work protocols: A monitor based approach,” in Proc. 23rd IEEE
Int. Symp. Rel. Distrib. Syst., 2004, pp. 18–30.

[25] J. C. King, “Symbolic execution and program testing,” Commun.
ACM, vol. 19, pp. 385–394, Jul. 1976.

[26] O. Kon and R. Castanet, “Test generation for interworking sys-
tems,” Comput. Commun., vol. 23, no. 7, pp. 642–652, 2000.

[27] C. Lattner and V. Adve, “LLVM: A compilation framework for
lifelong program analysis & transformation,” in Proc. Int. Symp.
Code Generation Optim., Mar. 2004, p. 75.

[28] Lawrence Berkeley National Labs. (1994, Jun.). Libpcap. [Online].
Available: http://www.tcpdump.org/

[29] G. G. License. Gcov: Gnu coverage tool. [Online]. Available:
http://gcc.gnu.org/onlinedocs/gcc-3.0/gcc_8.html

[30] X. Liu, Z. Guo, X. Wang, F. Chen, X. Lian, J. Tang, M. Wu, M. F.
Kaashoek, and Z. Zhang, “D3S: Debugging deployed distributed
systems,” in Proc. 5th USENIX Symp. Netw. Syst. Des. Implementa-
tion, 2008, pp. 423–437.

[31] S. Maag and C. Grepet, “Interoperability testing of a MANET
routing protocol using a node self-similarity approach,” in Proc.
ACM Symp. Appl. Comput., 2008, pp. 1908–1912.

[32] R. Majumdar and K. Sen, “Hybrid concolic testing,” in Proc. 29th
Int. Conf. Softw. Eng., 2007, pp. 416–426.

[33] M. Mansouri-Samani and M. Sloman, “GEM: A generalized event
monitoring language for distributed systems,” Distrib. Syst. Eng.,
vol. 4, no. 2, pp. 96–108, 1997.

[34] P. D. Marinescu and C. Cadar, “Make test-zesti: A symbolic exe-
cution solution for improving regression testing,” in Proc. 34th Int.
Conf. Softw. Eng., Jun. 2012, pp. 716–726.

[35] M. Musuvathi and D. R. Engler, “Model checking large network
protocol implementations,” in Proc. 1st Conf. Symp. Netw. Syst.
Des. Implementation, 2004, pp. 155–168.

[36] P. Mockapetris. (1987, Nov.). IETF RFC 1034: Domain Names—Con-
cepts and facilities. [Online]. Available: http://www.ietf.org/rfc/
rfc1034.txt

[37] M. Roesch, “Snort—Lightweight intrusion detection for
networks,” in Proc. 13th USENIX Conf. Syst. Admin., 1999, pp. 229–
238.

[38] R. Sasnauskas, O. Landsiedel, M. H. Alizai, C. Weise, S. Kowalew-
ski, and K. Wehrle, “Kleenet: Discovering insidious interaction
bugs in wireless sensor networks before deployment,” in Proc. 9th
ACM/IEEE Int. Conf. Inf. Process. Sens. Netw., 2010, pp. 186–196.

[39] N. P. Schultz-Møller, M. Migliavacca, and P. Pietzuch,
“Distributed complex event processing with query rewriting,” in
Proc. 3rd ACM Int. Conf. Distrib. Event-Based Syst., 2009, pp. 4:1–
4:12.

[40] S. Seol, M. Kim, S. Kang, and J. Ryu, “Fully automated interopera-
bility test suite derivation for communication protocols,” Comput.
Netw., vol. 43, no. 6, pp. 735–759, 2003.

[41] A. P. Sistla, V. Gyuris, and E. A. Emerson, “SMC: A symmetry-
based model checker for verification of safety and liveness proper-
ties,” ACM Trans. Softw. Eng. Methodol., vol. 9, no. 2, pp. 133–166,
Apr. 2000.

[42] J. Song, T. Ma, C. Cadar, and P. Pietzuch, “Rule-based verification
of network protocol implementations using symbolic execution,”
in Proc. 20th Int. Conf. Comput. Commun. Netw., Aug. 2011, pp. 1–8.

[43] J. Song, T. Ma, and P. Pietzuch, “Towards automated verification
of autonomous networks: A case study in self-configuration,” in
Proc. 8th IEEE Int. Conf. Pervasive Comput. Commun. Workshops,
Apr. 2010, pp. 582–587.

[44] D. H. Steinberg and S. Cheshire, Zero Configuration Networking: The
Definitive Guide. Sebastopol, CA, USA: O’Reilly Media, Dec. 2005.

[45] A. Tanenbaum, Computer Networks, 4th ed., Prentice Hall Profes-
sional Tech. Reference. Englewood Cliffs, NJ, USA: Prentice-Hall,
2002.

[46] O. Udrea, C. Lumezanu, and J. S. Foster, “Rule-based static analy-
sis of network protocol implementations,” Inf. Comput., vol. 206,
pp. 130–157, Feb. 2008.

[47] A. Vallejo, J. Ruiz, J. Abella, A. Zaballos, and J. Selga, “State of the
art of ipv6 conformance and interoperability testing,” IEEE Com-
mun. Mag., vol. 45, no. 10, pp. 140–146, Oct. 2007.

[48] S. Vitkovsky. (2009, Jan.). dhquery. [Online]. Available: http://
code.google.com/p/dhquery/

[49] D. Wagner and R. Dean, “Intrusion detection via static analysis,”
in Proc. IEEE Symp. Security Privacy, 2001, pp. 156–168.

[50] A. Wang, P. Basu, B. T. Loo, and O. Sokolsky, “Declarative net-
work verification,” in Proc. 11th Int. Symp. Pract. Aspects Declarative
Lang., 2009, pp. 61–75.

JaeSeung Song received the BS and MS
degrees in computer science from Sogang Univer-
sity. He received the PhD degree at Imperial Col-
lege London in the Department of Computing,
United Kingdom. He is an assistant professor in
the Computer and Information Security Depart-
ment at Sejong University. His research areas
include network management, IoT/M2M security,
the reliability and security of networked software
systems. Prior to his current position, he worked
for NEC Europe Ltd, Heidelberg, Germany, as a

senior researcher and IoT/M2M related standardization expert. He
also worked for LG Electronics as a senior researcher. He is a member
of the IEEE.

708 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 40, NO. 7, JULY 2014

Cristian Cadar received the undergraduate and
master’s degrees from the Massachusetts Insti-
tute of Technology, and the PhD degree in com-
puter science from Stanford University. He leads
the Software Reliability Group at Imperial College
London. His research interests span the areas of
software engineering, computer systems and
security, with an emphasis on designing practical
techniques for improving the reliability and security
of software systems. He is a member of the IEEE.

Peter Piezuch received the MA and PhD degrees
from the University of Cambridge. He is a senior
lecturer (associate professor), leading the Large-
scale Distributed Systems (LSDS) group in the
Department of Computing at Imperial College Lon-
don. His research work focuses on the design and
engineering of scalable, reliable and secure dis-
tributed systems, particularly in the context of big
data management, flexible networking and cloud
computing. Before joining Imperial College, he
was a post-doctoral fellow at Harvard University.

He is a member of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

SONG ET AL.: SYMBEXNET: TESTING NETWORK PROTOCOL IMPLEMENTATIONS WITH SYMBOLIC EXECUTION AND RULE-BASED... 709

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

