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Abstract. One of the main challenges of dynamic symbolic execution—
an automated program analysis technique which has been successfully
employed to test a variety of software—is constraint solving. A key deci-
sion in the design of a symbolic execution tool is the choice of a constraint
solver. While different solvers have different strengths, for most queries,
it is not possible to tell in advance which solver will perform better.

In this paper, we argue that symbolic execution tools can, and should,
make use of multiple constraint solvers. These solvers can be run com-
petitively in parallel, with the symbolic execution engine using the result
from the best-performing solver.

We present empirical data obtained by running the symbolic execution
engine KLEE on a set of real programs, and use it to highlight several im-
portant characteristics of the constraint solving queries generated during
symbolic execution. In particular, we show the importance of constraint
caching and counterexample values on the (relative) performance of KLEE
configured to use different SMT solvers.

We have implemented multi-solver support in KLEE, using the metaSMT
framework, and explored how different state-of-the-art solvers compare
on a large set of constraint-solving queries. We also report on our ongoing
experience building a parallel portfolio solver in KLEE.

1 Introduction

Symbolic execution [14] is a program analysis technique that can systematically
explore paths through a program by reasoning about the feasibility of explored
paths using a constraint solver. The technique has gathered significant attention
in the last few years [6], being implemented in several tools, which have found
deep bugs and security vulnerabilities in a variety of software applications [4].
One of the key factors responsible for the recent success of symbolic exe-
cution techniques are the recent advances in constraint-solving technology [10].
Nevertheless, constraint solving remains one of the main challenges of symbolic
execution, and for many programs it is the main performance bottleneck. As a
result, a key decision when designing a symbolic execution tool is the choice of
a constraint solver. While this choice may be affected by the solver’s supported
theories, specific optimisations or software licenses, in many cases it is somewhat
arbitrary, and it is not always clear which solver is the best match for a given
symbolic execution tool. In fact, given two state-of-the-art solvers, it is unlikely



that one consistently outperforms the other; more likely, one solver is better on
some benchmarks and worse on others. Moreover, for a given query, it is often
not possible to tell in advance which solver would perform better.

In this paper, we argue that symbolic execution tools can—and should—
make use of multiple constraint solvers. These solvers can be run competitively
in parallel, with the symbolic execution engine using the result from the best-
performing solver. We believe such an approach is particularly timely in the age
of parallel hardware platforms, such as multi-core CPUs [5].

The idea of using a portfolio of solvers is not new: this technique was already
employed in the context of SAT solving [13,24], SMT solving [23], and bounded
model checking [9], among others. However, as far as we know, this is the first
paper that reports on how different SMT solvers compare in the context of
symbolic execution.

The main contributions of this paper are:

1. A discussion of the main characteristics of the constraint-solving queries
generated in symbolic execution, accompanied by detailed statistics obtained
from real symbolic execution runs;

2. An analysis of the effect of constraint caching and counterexample values on
the performance of symbolic execution;

3. A comparison of several state-of-the-art SMT solvers for closed quantifier-
free formulas over the theory of bitvectors and bitvector arrays (QF_ABV) on
queries obtained during the symbolic execution of real-world software;

4. An extension of the popular symbolic execution engine KLEE [2] that supports
multiple SMT solvers, based on the metaSMT [12] solver framework.

5. A discussion of our ongoing experience building a portfolio solver in KLEE.

The rest of the paper is organised as follows. Section 2 provides background
information on symbolic execution and the KLEE system. Section 3 presents the
metaSMT framework and its integration with KLEE. Then, Section 4 analyses the
constraint-solving queries obtained during the symbolic execution of several real
applications, and discusses how different solvers perform on these queries. Fi-
nally, Section 5 discusses how symbolic execution could benefit from a parallel
portfolio solver, Section 6 presents related work and Section 7 concludes.

2 Background

Dynamic symbolic execution is a program analysis technique whose goal is to
systematically explore paths through a program, reasoning about the feasibility
of each explored path using a Satisfiability Modulo Theory (SMT) constraint
solver. In addition, symbolic execution systematically checks each explored path
for the presence of generic errors such as buffer overflows and assertion violations.

At a high level, the program is executed on a symbolic input, which is initially
unconstrained. For example, in the code in Figure 1, the symbolic input is the
integer variable x, which is in the beginning allowed to take any value. Then, as
the program executes, each statement that depends on the symbolic input adds



1  int main() {

2 unsigned a[5] = {0, 1, 1, 0, 0};
3 unsigned x symbolic();

4 unsigned y = x+1;

5 if (y < 5) {

6 if (alyl)
7

8

9
10

printf("Yes\n");
else printf("No\n");
}
else printf("Out of range\n");
11 return O;

Fig. 1. Code example illustrating some of the main aspects of symbolic execution.

further constraints on the input. For instance, the statement y=x+1 on line 4
constrains y to be equal to x 4+ 1. When a branch that depends on the symbolic
input is reached, if both branch directions are feasible, symbolic execution follows
them both, constraining the branch condition to be true on the true path, and
false on the other. In our example, when the program reaches the branch on
line 5, execution is forked into two paths: on the then path, the constraint y < 5
is added and execution proceeds to line 6, while on the else path, the constraint
y > 5 is added and execution proceeds to line 10. However, note that constraints
are added not in terms of intermediate variables such as y, but in terms of the
initial symbolic inputs. That is, in our example, the constraints being added on
each path are z +1 < 5 and = + 1 > 5. There is one case in which constraints
cannot solely be expressed in terms of the original inputs. This happens when a
concrete array is indexed by a symbolic variable. In our example, the concrete
array a is indexed by the symbolic variable y on line 6. In order to reason about
the symbolic access aly], the constraint solver needs to know all the values of
the array a. With this knowledge, the solver can determine that the branch at
line 6 can be both ¢rue (when z is 0 or 1) and false (when z is 2 or 3).

Finally, when a path ends or an error is discovered, one can take all the
constraints gathered along that path and ask the constraint solver for a concrete
solution. This solution, also called a counterexample, represents a test case that
exercises the path. In the context of software testing, these test cases can be
used to form high-coverage test suites, as well as to generate bug reports.

2.1 Constraint Solving in Symbolic Execution

In this section, we discuss some of the most important characteristics of the
constraint-solving queries generated during symbolic execution:

Large number of queries. This is perhaps the most important character-
istic of constraint solving in symbolic execution. Unlike other constraint-based
program testing and verification techniques that generate a small number of
queries,! on a typical run, symbolic execution generates queries at every sym-

! For instance, in bounded model checking [7] all paths up to a particular length are
encoded as a single query.



bolic branch and every potentially-dangerous symbolic operation it encounters,
amounting to a large number of overall queries. As a result, in order to efficiently
explore the program space, these queries need to be solved quickly, at a rate of
tens or even thousands of queries per second.

Concrete solutions. Symbolic execution often requires concrete solutions
for satisfiable queries. These are needed to create test cases, interact with the
outside world (e.g. before calling an external function, all symbolic bytes need
to be replaced by concrete values), simplify constraints (e.g., double-pointer
dereferences [3]), and reuse query results (e.g., KLEE’s counterexample cache [2]).

Array operations. Arrays play an important role in symbolic execution.
Many programs take as inputs arrays (in one form or another, e.g., strings are
essentially arrays of characters), and concrete arrays often become part of the
symbolic constraints when they are indexed by a symbolic input, as we have
shown above. Furthermore, pointer operations in low-level code are also mod-
elled using arrays. As a result, efficiently reasoning about arrays is extremely
important in symbolic execution [3].

Bit-level accuracy. Many programs require bit-level accurate constraints,
in order to reason about arithmetic overflow, bitwise operations, or integer and
pointer casting. In particular, an important characteristic of the KLEE tool anal-
ysed in this paper is that it generates queries with bit-level accuracy.

2.2 Constraint Solving in KLEE

The experiments presented in this paper use KLEE [2], a modern symbolic execu-
tion engine available as open source from http://klee.llvm.org. KLEE works
at the level of LLVM bitcode [15] and uses the constraint solver STP [11]. We now
elaborate on some key issues related to constraint solving in KLEE.

The queries issued by KLEE are of two main types: branch and counterezample
queries. Branch queries are issued when KLEE reaches a symbolic branch, to decide
whether to follow only the then, only the else, or both sides of the branch. They
are of the form (C, E) where C represents the set of constraints that hold on
the current path (the path constraints), and E is a branch expression whose
validity KLEE tries to establish. The possible answers are provably true, provably
false, and neither (i.e., under the current set of constraints C', E could be both
true and false). Branch queries are broken down into one or two satisfiability
(or validity?) queries. For instance, to conclude that E is neither provably true
nor provably false, KLEE needs to determine that both —F and F are satisfiable.

Counterexample queries are used to request a solution for the current path
constraints, e.g. when KLEE needs to generate a test case at the end of a program
path. In addition, the counterexample cache in KLEE (described below) asks for
a counterexample for all queries that are found to be satisfiable.

Before invoking STP, KLEE performs a series of constraint solving optimisa-
tions, which exploit the characteristics of the queries generated during symbolic

2 In our context, a satisfiability query can be transformed into a validity query and
vice-versa: a formula F' is satisfiable iff —F is not valid.
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Fig. 2. Solver passes in KLEE, including the new metaSMT pass.

execution. These optimisations are structured in KLEE as a sequence of solver
passes, which are depicted in Figure 2; most of these passes can be enabled and
disabled via KLEE’s command-line options.

One of the key solver passes in KLEE is the elimination of redundant con-
straints, which we call constraint independence [3]. Given a branch query (C, E),
this pass eliminates from C all the constraints which are not (transitively) re-
lated to E. For example, given C = {z < 10,z < 20,z +y = 10,w = 2z,y > 5}
and E = x > 3, this pass eliminates from C the constraints z < 20 and w = 2z,
which don’t influence E.

The other key solver passes are concerned with caching. KLEE uses two differ-
ent caches: a branch cache, and a counterexample cache. The branch cache simply
remembers the result of branch queries. The counterexample cache [2] works at
the level of satisfying assignments. Essentially, it maps constraint sets to either
a counterexample if the constraint set is satisfiable, or to a special sentinel if
it is unsatisfiable. Then, it uses subset and superset relations among constraint
sets to determine the satisfiability of previously unseen queries. For example, if
the cache stores the mapping {z > 3,y > 2,2 +y = 10} — {x = 4,y = 6},
then it can quickly determine that the subset {z > 3,z + y = 10} of the initial
constraint set is also satisfiable, because removing constraints from a set does
not invalidate any solutions. Similarly, the counterexample cache can determine
that if a constraint set is unsatisfiable, any of its supersets are unsatisfiable too.

An important optimisation of the counterexample cache is based on the obser-
vation that many constraint sets are in a subset/superset relation. For example,
as we explore a particular path, we always add constraints to the current path
constraints. Furthermore, we observed that many times, if a subset of a constraint
set has a solution, then often this solution holds in the original set too [2]. That
is, adding constraints often does not invalidate an existing solution, and checking
whether this holds (by simply substituting the solution in the constraints) is usu-
ally significantly cheaper compared to invoking the constraint solver. For exam-
ple, if the cache stores the mapping {x > 3,y > 2,z +y = 10} — {x =4,y = 6},
then it can quickly verify that the solution {z = 4,y = 6} also satisfies the su-
perset {x > 3,y > 2,2+y = 10,z < y} of the original constraint set, thus saving
one potentially-expensive solver call. Given a constraint set, the counterexample
cache tries all of its stored subsets, until it finds a solution (if any exists).



An important observation is that the cache hit rate depends on the actual
counterexamples stored in the cache. For example, if instead the cache stored
the mapping {z > 3,y > 2,2 +y = 10} — {z = 7,y = 3}, it would not be able
to prove that the superset {x > 3,y > 2,2 + y = 10,2 < y} is also satisfiable,
since the cached assignment {x = 7,y = 3} is not a solution for the superset.

3 The metaSMT framework

One of the factors that has contributed to the recent progress in constraint-
solving technology is the development of SMT-LIB [18], a common set of stan-
dards and benchmarks for SMT solvers. In particular, SMT-LIB defines a com-
mon language for the most popular SMT logics, including the fragment of
closed quantifier-free formulas over the theory of bitvectors and bitvector arrays
(QF_ABY), which is used by KLEE. Unfortunately, communicating via the textual
constraint representation offered by the SMT-LIB format is not a feasible op-
tion in practice. The overhead of having the symbolic execution engine output
SMT-LIB constraints and the solver parsing them back would be excessive. For
example, we measured for a few benchmarks the average size of a single KLEE
query in SMT-LIB format, and we found it to be on the order of hundreds of
kilobytes, which would add significant overhead given the high query rate in
symbolic execution (see §4).

As a result, it is critical to interact with solvers via their native APIs, and
in our work we do so by using the metaSMT framework. metasMT [12] provides
a unified API for transparently using a number of SMT (and SAT) solvers,
and offers full support for the QF_ABV logic used by KLEE. The unified C++ API
provided by metaSMT is efficiently translated at compile time, through template
meta-programming, into the native APIs provided by the SMT solvers. As a
result, the overhead introduced by metaSMT is small, as we discuss in Section 4.

The solvers supported by metaSMT for the QF_ABV fragment are Boolector [1]
and z3 [17]. STP only had support for QF_BV, and we extended it to fully handle
the QF_ABV fragment. We contributed back our code to the metaSMT developers.

In KLEE, we added support for using the metaSMT API by implementing a new
core solver pass, as depicted in Figure 2.

4 Experimental Evaluation

We evaluated our multi-solver KLEE extension on 12 applications from the GNU
Coreutils 6.10 application suite, which we used in prior work [2,16]. We selected
only 12 out of the 89 applications in the Coreutils suite, in order to have time
to run them in many different configurations (our experiments currently take
days to execute). Our selection was unbiased: we first discarded all applications
for which either (a) our version of KLEE ran into unsupported LLVM instructions
or system calls,® (b) KLEE finished in less than one hour (e.g. false), or c¢) the

3 Currently, KLEE does not fully support the LLVM 2.9 instruction set nor certain system
calls in recent versions of Linux.



symbolic execution runs exhibited a significant amount of nondeterminism (e.g.
for date, which depends on the current time, or for kill, where we observed very
different instructions executed across runs). Out of the remaining applications,
we selected the first 12 in alphabetical order.

We used LLVM 2.9 and metaSMT 3 in our experiments, and the SMT solvers
Boolector v1.5.118, Z3 v4.1 and STP 32:1668M, for which we used the default
configuration options as provided by metaSMT (see also the threats to validity in
§4.3). We configured KLEE to use a per-query timeout of 30s and 2 GB of memory.
We ran all of our experiments on two similar Dell PowerEdge R210 IT machines
with 3.50 GHz Intel Xeon quad-core processors and 16 GB of RAM.

4.1 Solver comparison using the DFS strategy and no caching

For the first set of experiments, we ran each benchmark for one hour using
KLEE’s default STP solver and recorded the number of executed LLVM instructions.
In the following experiments, we ran each benchmark with KLEE for the previ-
ously recorded number of instructions, configured to use four different solver
configurations: default STP, metaSMT with STP, with Boolector and with z3.

The main challenge is to configure KLEE to behave deterministically across
runs; this is very difficult to accomplish, given that KLEE relies on timeouts, time-
sensitive search heuristics, concrete memory addresses (e.g. values returned by
malloc), and counterexample values from the constraint solver. To make KLEE
behave as deterministically as possible, we used the depth-first search (DFS)
strategy, turned off address-space layout randomisation, and implemented a de-
terministic memory allocator to be used by the program under testing. With
this configuration, we have observed mostly deterministic runs with respect to
the sequence of instructions executed and queries issued by KLEE—in particular,
for all 12 benchmark considered, we observed that KLEE’s behaviour is very sim-
ilar across metaSMT runs: e.g. modulo timeouts, KLEE consistently executed the
same number of instructions with different solvers, and the number of queries
only rarely differed by a very small number. We believe that for these bench-
marks, the effect of any remaining nondeterminism is small enough to allow for
a meaningful comparison.

MetaSMT overhead. To measure the overhead introduced by metaSMT, we
compared KLEE using directly the STP API with KLEE using STP via the metaSMT
API. For 9 out of the 12 benchmarks, the overhead was small, at under 3%. For
1n it was 6.7%. For chmod and csplit, the overhead was substantial (72.6% and
42.0% respectively), but we believe this is mainly due to the way STP expressions
are exactly constructed via the two APIs.

Statistics for KLEE with STP. Table 1 presents some statistics about the
runs with KLEE using its default solver STP, invoked via the metasMT API.

4 Note that re-running KLEE with STP for the same number of instructions does not
always take one hour; this is due to the fact that on exit KLEE performs different
activities than when run with a timeout. However, the goal of this initial run is only
to obtain a fixed number of instructions for which to re-run each benchmark.



Table 1. Statistics for the DFS runs without caching, using STP via the metaSMT API:
the instructions per second rate, the number of queries, the average query size, the
queries per second rate in KLEE and STP respectively, and the percentage of time spent
in all constraint-solving activities and STP respectively.

Application Instrs/sec Queries Q-size Queries/sec Solver(%)
total STP total STP
[ 3,914 197,282 2,868 55.1 60.0 97.8  89.8

base64 18,840 254,645 546 73.8 766  97.0 934
chmod 12,060 202,855 7,025 364 402 972 87.9
comm 73,064 586,485 120 189.0 201.9  88.4 82.7
csplit 10,682 244,803 2,179  49.7 527  98.3 927
dircolors 8,000 175,531 1,588  49.3  50.5  98.6 96.4
echo 227 114,830 6,852 348 417  98.8 82.3
env 21,955 379,421 664 109.1 119.8  97.2 885
factor 1,807 19,055 2,213 5.3 53 99.7 994
join 12,649 131,947 1,391  36.6 372 981 96.3
In 13,420 366,926 786 103.8 1153  97.0 874
mkfifo 25,331 221,308 2,144 623 674 966 89.3

The number of LLVM instructions executed per second varied between 227
for echo and 73,064 for comm, with a median of 12,355 instructions per second.
The number of queries issued by each benchmark to the solver ranges between
19,055 for factor and 586,485 for comm, with a median of 212,082. The Queries/sec
column shows two query rates for each benchmark: the first is the overall rate,
i.e., number of queries over the total time spent by KLEE in constraint-solving
activities (i.e. all activities in Figure 2), while the second is the rate seen by STP,
i.e., the number of queries over the total time spent in STP.® The overall rate
varies between 5.3 queries per second for factor and 189.0 for comm, with the
median at 52.4 queries per second, while the STP rate varies between 5.3 queries
per second for factor and 201.9 for comm, with the median at 56.4 queries per
second. This is a high query rate; as we discussed in Section 2, constraint solving
in symbolic execution has to handle a high number of queries per unit of time.

The column Q-size measures the average query size in terms of number of
expression nodes, where shared expressions are only counted once. The set of
the four smallest Q-size values corresponds to that of the four largest queries per
second rates, but we did not observe any correlation for the other benchmarks.

The last column of Table 1 shows the percentage of time spent in constraint
solving: the first number shows the percentage of time spent by KLEE in all
constraint-solving activities, while the second number shows the percentage of
time spent in STP. The key observation is that with the exception of comm, KLEE
spends over 96% of the overall time in constraint-solving activities, with over
82% of the overall time spent in STP. This shows that for these benchmarks,

® STP times include the overhead incurred by using metaSMT.
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Fig. 3. Distribution of query types for the DFS runs without caching. For each bench-
mark, the left bar shows the percentage of queries that are processed by the core solver
(via metaSMT) in 0-0.1s, 0.1-1s, 1-10s, 10-20s, 20-30s or reach the 30s timeout, while
the right bar shows the percentage of time spent executing queries of each type.

constraint solving is the main performance bottleneck, and therefore optimising
this aspect would have a significant impact on KLEE’s overall performance.

The upper chart in Figure 3 shows the distribution of query types for KLEE
with STP. There are two bars for each benchmark: one showing the percentage
of queries that finish in 0-0.1s, 0.1-1s, 1-10s, 10-20s, 20-30s, and time out; and
one showing the percentage of time spent executing queries of each type. With
the exception of factor and join, almost all queries (over 99%) take less than
0.1 seconds to complete, and STP spends almost all of its time (over 98%) solving
such cheap queries. For factor, almost 80% of the queries still take less than
0.1s, but they account for only around 5% of the time.

Solver comparison. To compare the performance of different solvers, we ran
KLEE via metaSMT with STP, z3 and Boolector for a fixed number of instructions,
as discussed above. Besides the 30s timeout set for each query, we also set an
overall timeout of three hours for each run. STP and Z3 have no query timeouts,
while Boolector has query timeouts on all benchmarks with the exception of
echo and env. Note that per-query timeouts may have a significant impact on
the instructions executed by KLEE, since on a query timeout, we terminate the
current execution path (which may have later spawned a large number of paths),
and follow alternative parts of the execution tree instead.
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Fig. 4. Time taken by KLEE with metaSMT for STP, Z3 and Boolector, using DFS and
no caches. We set a timeout of 30s per query and an overall timeout of 10,800s (3h)
per run. Boolector had query timeouts on all applications apart from echo and env
and always reached the overall timeout except for factor. Query timeouts affect the
subsequent queries issued by KLEE, which is why we only show two bars for Boolector.

Figure 4 shows the results. STP emerges as the clear winner: it is beaten on
a single benchmark, and it has no query timeouts nor overall timeouts. The one
notable exception is factor, where z3 finishes more than twice faster than STP
(1,713s for z3 vs. 3,609s for STP). This categorical win for STP is not that sur-
prising: STP was initially designed specifically for our symbolic execution engine
EXE [3], and its optimisations were driven by the constraints generated by EXE.
As a re-design of EXE, KLEE generates the same types of queries as EXE, and thus
benefits from STP’s optimisations.

Figure 3 presents the distribution of query types for all solvers. Note that
because of timeouts, the three solvers do not always execute the same queries.
So although a precise comparison across solvers is not possible, this figure does
show the mix of queries processed by each solver. While STP solves most of its
queries in under 0.1s, the situation is different for the other two solvers: Z3 often
spends a lot of its time processing queries in the 0.1-1s range, while Boolector
processes a wider variety of query types. In particular, it is interesting to note
that while Boolector often spends most of its time in queries that time out, the
percentage of these queries is quite small: for example, for dircolors there are
only 0.5% queries that time out, but these consume 87.3% of the time. This
illustrates the effect of the timeout value on the overall performance of symbolic
execution: one may observe that decreasing the timeout value to 10s would not
change the results for STP and z3, but would help Boolector solve more queries.

4.2 Solver comparison using the DFS strategy and caching

We repeated the same experiment with KLEE’s caches enabled, to understand the
effect of caching on solver time. That is, we ran KLEE using the STP API for one
hour per benchmark, and we recorded the number of instructions executed in



Table 2. Statistics for the DFS runs with caching, using STP via the metaSMT API: the
instructions per second rate, the number of queries and the queries per second rate in
KLEE and STP respectively, and the percentage of time spent in all constraint-solving
activities and STP respectively.

Application Instrs/sec Queries Queries/sec Solver(%)
total  STP total STP  total STP
[ 695 30,838 30,613 7.9 58.3 99.6 13.4
base64 20,520 184,348 47,600 42.2 42.6 98.7 25.3
chmod 5,360 46,438 37,911 12.6 75.7 99.2 13.5
comm 222,113 1,019,973 21,720 305.0 83.5 87.9 6.8
csplit 19,132 285,655 33,623 63.5 28.0 98.1 26.2
dircolors 1,091,795 5,609,093 2,077 4,251.7 64.0 36.3 0.9
echo 52 16,318 764 4.5 52.7 99.7 0.4
env 13,246 96,425 38,047 26.3 63.8 98.5 16.1
factor 12,119 80,975 6,189 22.6 1.8 99.1 97.6
join 1,033,022 5,362,587 4,963 3,401.2 342  43.9 4.0
In 2,986 91,812 40,868 24.5 62.7 99.4 17.3
mkfifo 3,805 26,631 25,622 72 581 993  11.9

each case. We then re-ran KLEE on each benchmark for the previously recorded
number of instructions using STP, Z3 and Boolector via the metaSMT API.

We begin again by showing, in Table 2, some statistics about the runs with
KLEE using STP via the metaSMT API. The table presents the same information as
in Table 1, except that we omit the Q-size metric, and we show two numbers
under the Queries column: the first is the number of queries issued by KLEE to
the branch cache,® while the second is the number of queries issued to STP (i.e.
those that miss in both caches).

First of all, it is interesting to compare the rate of instructions and queries
issued by KLEE with and without caching. While the actual instructions executed
in each case may be quite different, Tables 1 and 2 clearly show that caching
sometimes helps significantly, while sometimes hurts performance. For example,
dircolors goes from a relatively modest 8,090 instructions per second without
caching to 1,091,795 with caching, and from only 49.3 queries per second with-
out caching to 4,251.7 with caching. At the other end of the spectrum, mkfifo
decreases its processing rate from 25,331 to 3,895 instructions per second, and
from 62.3 to 7.2 queries per second. This illustrates the need for better, more
adaptive caching algorithms.

The Solver column shows that KLEE still spends most of its time in constraint-
solving activities (which include the caching code): for 9 out of the 12 bench-
marks, KLEE consumes more than 98% of the time solving queries. On the other
hand, the amount of time spent in STP itself decreases substantially compared
to the runs without caching, with a median value at only 13.5%.

5 Recall that the branch queries stored in this cache sometimes summarise the result
of two solver queries.
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Fig. 5. Execution times for the DFS runs with caching. We set a timeout of 30s per
query and an overall timeout of 10,800s (3h) per run. Boolector had individual query
timeouts on all applications apart from echo and env. Query timeouts affect the sub-
sequent queries issued by KLEE, which is why we only show two bars for Boolector.

Figure 5 shows the time taken by each solver on the DFS runs with caching.
Overall, STP is still the clear winner, but the interesting fact is that caching can
sometimes affect solvers in different ways, changing their relative performance.
One such example is echo, where Z3 wins: none of the solvers have timeouts, and
all issue 16,318 overall queries, 764 of which reach the solver. However, KLEE with
Z3 spends significantly less time in the caching code, which accounts for its overall
performance gain (interestingly enough, STP is faster than z3 for the 764 queries
that reach the solver: 14s for STP vs. 74s for z3). The widely different behaviour
of the caching module is due to the different solutions returned by each solver: we
noticed that with z3, the counterexample cache tries significantly fewer subsets
in its search for a solution.

Another interesting example is env: with all solvers, KLEE issues 96,425 queries.
However, with STP and Boolector, only 38,047 reach the solver, while with z3,
38,183 do. The 136 queries saved by the STP and Boolector runs are due to
the fact that they were luckier with the solutions that they returned, as these
solutions led to more hits afterwards.

To sum up, we believe these experiments demonstrate that the (relative)
performance of KLEE running with different solvers can be affected, sometime
substantially, by caching. Caching can significantly improve performance, but
can also deteriorate it, so future work should focus on better, more adaptive
caching algorithms. A key factor that affects caching behaviour are the solutions
returned by the solver: first, different solutions can lead to different cache hit
rates (as shown by the env runs), and second, even when the cache hit rate
remains unchanged, different solutions can drastically affect the performance of
the caching module, as demonstrated by the echo runs. Therefore, one interesting
area of future work is to better understand the effect of the solutions returned
by the solver on caching behaviour. In fact, we believe that this is also an aspect
that could play an important role in the design of a portfolio solver: if multiple
solvers finish at approximately the same time, which solution should we keep?



4.3 Threats to validity

There are several threats to validity in our evaluation; we discuss the most im-
portant ones below. First, we considered a limited set of benchmarks and only
the DFS strategy, so the results are not necessarily generalisable to other bench-
marks and search strategies. Second, as discussed in Section 4, KLEE is highly
nondeterministic; while we put a lot of effort into eliminating nondeterminism,
there are still variations across runs, which may affect measurements. Third,
our results may be influenced by specific implementation details in KLEE, so we
cannot claim that they are generalisable to other symbolic execution engines.
Finally, we used the default configuration of the SMT solvers made available
through the metasSMT API. Different configuration options may change the rela-
tive performance of the solvers.

5 Portfolio Solving in Symbolic Execution

Symbolic execution can be enhanced with a parallel portfolio solver at different
levels of granularity. The coarsest-grained option is to run multiple variants of
the symbolic execution engine (in our case KLEE), each equipped with a different
solver. This is essentially what our experiments in Sections 4.1 and 4.2 show.
This has the advantage of having essentially no overhead (the runs are fully
independent, and could even be run on separate machines) and being easy to
deploy. Given a fixed time budget, one can run in parallel variants of KLEE config-
ured with different solvers and select at the end the run that optimises a certain
metric (e.g. number of executed instructions); or given a certain objective (e.g.
a desired level of coverage), one could run concurrently the different variants
of KLEE and abort execution when the first variant achieves that objective. The
key advantage here is that without any a priori knowledge of which solver is
better on which benchmarks, the user would obtain the results associated with
the best-performing variant.

Our experiments in Sections 4.1 and 4.2 already show that this can be effec-
tive in practice: for instance, for the runs with caching presented in Figure 5,
where the objective is to execute a given number of instructions, the user would
obtain results as soon as KLEE with STP finishes for, say, [ and chmod (where STP
wins), and as soon as KLEE with z3 finishes for echo and factor (where Z3 wins).

Another option for integrating portfolio solving in symbolic execution is at
a finer level of granularity, e.g. at the level of individual solver queries, or of
groups of consecutive queries. We are currently designing a portfolio solver at
the query level, and while it is too early to report any results, we include below
a discussion of the most important aspects that we have encountered.

As one moves to finer granularity, one creates opportunities for the portfolio-
based variant of KLEE to behave better than all single-solver variants. At the
coarse granularity of KLEE variants, one cannot perform better than the best
variant; instead, using a portfolio solver at the query level, KLEE may perform
significantly better than when equipped with the best individual solver, since
different solvers may perform better on different queries.



On the other hand, at the query level, the performance overhead can be
substantial, potentially negating in some cases the benefit of using a portfolio
solver. This is particularly true in light of the fact that the vast majority of
queries take very little time to complete, as discussed in Section 4.1. For such
queries, the time spent spawning new threads or processes and monitoring their
execution may be higher than the actual time spent in the SMT solvers. As a
result, one idea is to start by running a single solver, and only if that solver does
not return within a small time span (e.g. 0.1s), spawn the remaining solvers in
the portfolio.

Related to the point above, we noticed that spawning threads versus spawn-
ing processes to run a solver can have a significant effect on performance. On
the one hand, threads are more lightweight, and therefore incur less overhead:
on several runs of KLEE configured with a single version of STP we observed sig-
nificant speedups (varying from 1.25x to 1.93x) by simply switching from using
a process to using a thread to run STP. On the other hand, using processes has
the advantage that memory management is not an issue: on process exit, all the
memory allocated by the solver is automatically freed by the operating system.
This does not happen when threads are used, and we have observed that in many
cases KLEE equipped with a portfolio of threaded solvers ends up consuming all
available memory and starts thrashing.

Another important consideration is caching. As we discussed in Section 4.2,
the actual counterexample values returned by a solver can have a significant
influence on performance, so deciding what values to keep can be important.
One option is to store the values of the first solver that returns with an answer.
However, for queries where multiple solvers perform similarly, one might want to
wait for a small additional amount of time to see if other solvers terminate too.
If this happens, one can consider keeping all the counterexamples returned by
different solvers, or selecting some of them: of course, keeping more counterex-
amples may increase the hit rate, but degrade performance. Some SMT solvers
(and the SAT solvers they use) are incremental: to benefit from this aspect, it
might also be important to wait for a short amount of time to allow more solvers
to finish, as discussed above.

Finally, we consider the makeup of a portfolio solver. While including different
SMT solvers is an obvious choice, based on our experience, we believe it is also
important to consider different variants and versions of the same solver. While
solvers may overall evolve for the better, given the nature of the problem, it
is not uncommon to find queries on which newer versions of a solver perform
worse. As a result, multiple versions of the same solver can be good candidates
for a portfolio solver.

In addition, most solvers have a plethora of configuration options, which
can have a significant impact on solving time. Selecting the right configuration
parameters is a difficult decision, as it is often impossible to tell in advance which
parameter values will perform better on which queries. Also, many modern SMT
solvers are build on top of SAT solvers. Configuring a given SMT solver with
different options and SAT solvers can provide additional candidates to include in



the portfolio. Finally, SAT solvers have their own configuration options, which
can be varied to create additional candidates.

6 Related Work

Constraint solving plays an important role in symbolic execution, and a signifi-
cant effort has been invested in understanding and optimising constraint solving
and constraint caching in a symbolic execution context, e.g. [2, 3,19, 22, 25].
This paper provides additional information about the constraints encountered
during symbolic execution (and in KLEE in particular), the effect of caching on
solving time, and the relative performance of different solvers on several real
benchmarks.

Portfolio solving has been explored in the past in the context of SAT solv-
ing [13,24], SMT solving [23], and bounded model checking [9], among others.
As far as we know, this is the first paper that reports on how different SMT
solvers compare and could be combined in a portfolio solver in the context of
symbolic execution.

Portfolio solving is a form of variant-based parallelization, which has been
effectively used in the past to improve application performance, e.g. [8,20,21].
For instance, [20] proposes a general framework for competitive execution that
targets multicore and multiprocessor systems, in which sequential applications
are optimised by introducing competitive variants for parts of the program.

7 Conclusion

In this paper, we have discussed some of the most important characteristics of
the constraints generated in symbolic execution, and identified several aspects
that we believe are important for designing better SMT solvers for symbolic
execution, and for combining multiple solvers using a portfolio-based approach.
In particular, we have shown that counterexample values and caching can in
some cases significantly affect constraint solving, and discussed several options
for designing a portfolio solver for symbolic execution.

The reader can find additional information about our KLEE extension and
experiments at http://srg.doc.ic.ac.uk/projects/klee-multisolver.
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