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ABSTRACT
Despite significant recent advances, the effectiveness of symbolic

execution is limited when used to test complex, real-world software.

One of the main scalability challenges is related to constraint solv-

ing: large applications and long exploration paths lead to complex

constraints, often involving big arrays indexed by symbolic expres-

sions. In this paper, we propose a set of semantics-preserving trans-

formations for array operations that take advantage of contextual

information collected during symbolic execution. Our transforma-

tions lead to simpler encodings and hence better performance in

constraint solving. The results we obtain are encouraging: we show,

through an extensive experimental analysis, that our transforma-

tions help to significantly improve the performance of symbolic

execution in the presence of arrays. We also show that our transfor-

mations enable the analysis of new code, which would be otherwise

out of reach for symbolic execution.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging;
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1 INTRODUCTION
Symbolic execution is an approach at the core of many modern

techniques to software testing, automatic program repair, and re-

verse engineering [6, 10, 20, 22, 25, 27]. At a high-level, symbolic

execution provides an automated mechanism for exploring multi-

ple paths in a program by constructing and solving symbolic path

∗
The first two authors contributed equally to this paper.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ISSTA’17, July 2017, Santa Barbara, CA, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-

tion for Computing Machinery.

ACM ISBN 978-1-4503-5076-1/17/07. . . $15.00

https://doi.org/

1 char b64[256] = {−1, −1, −1, ... 62, −1, −1, −1, 63, 52, 53, 54, 55,
56, 57, 58, 59, 60, 61, −1, −1, −1, −1, ..., −1 };

2

3 unsigned isBase64(unsigned char k) {
4 if (b64[k] >= 0)
5 return 1;
6 else
7 return 0;
8 }

Figure 1: A simplified excerpt from the base64 decoding rou-
tine in Coreutils. Array b64 has positive values at offsets 43,
47–57, 65–90, and 97–122.

conditions. Symbolic execution employs satisfiability-modulo the-

ory (SMT) constraint solvers to determine the feasibility of a path

condition and to generate concrete solutions for it. Despite the

recent significant improvements in SMT solvers [12], constraint

solving is still one of the main bottlenecks of symbolic execution.

First, symbolic executors issue a huge number of queries to the

constraint solver—for example those generated at every branch

that depends on symbolic inputs—and second, symbolic execution

generates large and complex constraints when applied to real-world

programs. As a result, constraint solving dominates runtime for the

majority of non-trivial programs, in which often more than 90% of

the time is spent in constraint solving activities [24, 26]. Authors

of symbolic execution engines recognize this major bottleneck and

have invested significant effort in reducing the impact of constraint

solving using various techniques, such as caching of solutions and

optimizing queries with subset/superset relations [6]. Nevertheless,

constraint solving still remains a showstopper for the application

of symbolic execution to many real-world software.

Some of the most expensive constraints in symbolic execution

involve arrays. Many programs take as inputs various forms of

arrays, for example strings are encoded as arrays of characters,

and developers extensively use arrays to implement various data

structures (e.g. hash tables and vectors). Pointer operations in low-

level code are often modelled using arrays [6, 7, 14]. As a result,

arrays are prevalent in symbolic path conditions.

While array accesses with concrete indexes can be expressed and

handled similarly to scalar variables, array accesses with symbolic

indexes are more difficult to manage, as they could refer to poten-

tially every position in the array. Consider the code in Figure 1,

where the function isBase64 computes if a given integer input rep-

resents a value in the base64 encoding. The access b64[k] at line 4
can refer to any of the 256 positions in the array. This implies that

all the array values have to be communicated to the constraint

solver to determine the feasibility of b64[k] ≥ 0. Therefore, an

SMT formula over arrays requires creating a variable for each off-

set of the array and asserting the indexed value (more in §2.1 and

§2.2). Such formulaic representation rapidly leads to inefficiencies

https://doi.org/
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in the constraint solving procedures that result in slowdowns and

timeouts, thus hindering symbolic execution.

In this paper, we propose a fully automatic technique to op-

timize constraints involving arrays, which are one of the major

bottlenecks in symbolic execution. Our technique employs orthog-

onal semantics-preserving transformations for array operations, by

taking advantage of contextual information during symbolic execu-

tion. Our transformations lead to optimized constraint encodings,

ultimately improving the efficiency of symbolic execution. They

rely on the key observation that when the array contains concrete

values, we can transform the array operations into semantically-

equivalent ones involving only the indexes satisfying the condi-

tion, or the unique values in the array. For instance, the operation

b64[k] ≥ 0 in Figure 1 can be transformed into the equivalent query

k = 43 ∨ k = 47 ∨ k = 48 ∨ .. that involves only the integer in-

dex values satisfying the condition, for which constraint solvers

are highly optimized. Moreover, an array read with a symbolic

index can be transformed to index range check operations that

group the repeated values in the array, reducing the size of the

formula in the solver. For example, the array indexing b64[k] can
be rewritten using an if-then-else construct so that the indexes in

(0 ≤ k ≤ 42)∨ (44 ≤ k ≤ 46)∨ .. result in reading -1 from the array,

and so on.

We develop a prototype implementation of our transformations

within the KLEE symbolic executor [6]. Our experimental eval-

uation demonstrates that the transformations can indeed lead to

significant improvements in the performance of symbolic execution.

In summary, we make the following contributions:

(1) We propose novel semantics-preserving transformations for

array operations to achieve better encodings of arrays.

(2) We precisely define where and how these transformations are

applied during symbolic execution, which requires distinguish-

ing scenarios such as concrete arrays versus symbolic arrays

and concrete indexing versus symbolic indexing.

(3) We develop a prototype implementation inside the symbolic

executor KLEE and make it publicly available.

(4) We report the results on 57 real-world programs. Our technique

improves symbolic execution performance by a factor of up

to 27.46x when applicable. For inapplicable cases, it does not

harm performance. We also show that our technique enables

symbolic execution to analyze code unreachable otherwise.

2 OVERVIEW
This section provides the necessary background on the theory

of arrays (§2.1), motivates our work using the popular GNU BC

tool (§2.2), and then gives an overview of our contributions (§2.3).

2.1 Background
Arrays are prevalent in programs. Many popular data structures,

such as vectors, strings, and hash tables, are internally represented

as arrays. As such, the theory of arrays is one of the primitive

theories supported by SMT solvers. Next, we briefly explain the

array theory to provide the context for later discussion.

Inside an SMT solver, an array is typically represented as a set

of (scalar) symbolic variables, one for each array element. Array

reads/writes are realized by selecting the corresponding elements

and performing the operation. Such selection may be very costly

in situations where both concrete and symbolic array indexes are

involved, requiring enumerating all possible concrete index values.

The array encoding in SMT solvers is generally founded on

two axioms [16]. The first axiom enforces the offset-to-value cor-
respondence in the array by creating a variable for each offset of

the array and asserting that it is equal to the corresponding value

in the array. Note that the values may be symbolic or concrete,

depending on whether the array is updated by some symbolic ex-

pression at runtime. The second axiom enforces the index-to-offset
correspondence, which implies that if the symbolic index of the

array is equal to a specific offset, then the result of the read is the

one enforced by the offset-to-value axiom. As such, the formulaic

representation referring to an array read (with a symbolic index)

is an intertwinement of the two axioms. For example, the branch

condition at line 4 in Figure 1 is encoded in the following way,

where b640,b641, ...,b64255 represent the variables associated with

the concrete array reads b64[0],b64[1], ...,b64[255] and b64k is the

variable chosen to represent the symbolic array read b64[k]:

(b640 = −1) ∧ (b641 = −1) ∧ · · · ∧ (b64255 = −1)∧

(b64k ≥ 0)∧

(k = 0 → b64k = b640) ∧ . . . ∧ (k = 255 → b64k = b64255))

Array writes are not independently encoded. Instead, they are

represented together with the enclosing read operations through

the so-called read-over-write transformation [3, 28]. For instance

the readA[j] after a writeA[i] = v is encoded as follows, where the

uninterpreted functions read(A, i) and write(A, i) denote reading
and writing the ith element of arrayA, respectively, and ite denotes
an if-then-else expression:

read(write(A, i,v), j) ↔ ite(i = j,v, read(A, j))

That is, when a read has the same index as a preceding write,

the value obtained is the updated value. When the indexes differ,

the value obtained is the one stored in the array before the update.

In the next section, we discuss how the array theory can become

the performance bottleneck for symbolic execution.

2.2 Motivation
GNU BC [17] is an arbitrary-precision calculator that solves expres-

sions written in a C-style language. While performing symbolic

execution on BC using KLEE, we observed that the analysis was

encountering severe performance issues, in fact, it was still within

one of the first functions after an hour of execution. Through man-

ual inspection, we found that the symbolic execution was stuck in

a code region whose simplified version is shown in Figure 2.

The code is a token matching algorithm performed in the func-

tion yylex in BC. The algorithm performs the lexical analysis step of

the input script by implementing a Deterministic Finite Automaton

(DFA). The goal of the DFA is to recognize the tokens defined in the

language grammar of the calculator, which represent digits, vari-

able names, and mathematical operators. To implement the DFA,

programmers make use of several constant arrays whose values rep-

resent both state information and lexer actions. The user-supplied

input is then used as an index for the arrays, and the subsequent

result of the access is used to drive the behavior of the lexer. In
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1 char equivClass[256] = {0, 1, 1, .. 10, 11, 12, 13 .. 1, 1, 1};
2 char accept[298] = {0, 0, .. 41, 32, 28, .. 23, 2, 2, 0};
3 unsigned check[580] = {0, 1, 1, .. 141, 142, 144, .. 297, 297};
4 unsigned base[302] = {0, 0, .. 412, 422, .. 120, 395, 398};
5 unsigned def[302] = {0, 297, .. 63, 300, .. 297, 297, 297};
6 char meta[54] = {0, 1, 1, .. 1, 3, 3, .. 3, 3, 1, 1, 1};
7 unsigned next[580] = {0, 6, 7, .. 132, 133, .. 297, 297};
8

9 void tokenMatch(char ∗input) {
10 unsigned currState = 0;
11 char charPtr = input ;
12 do {
13 char currClass = equivClass [∗ charPtr ];
14 if (accept[ currState ]) {
15 lastAcceptState = currState ;
16 lastAcceptPos = charPtr ;
17 }
18 while(check[base[currState] + currClass ] != currState ) {
19 currState = def[ currState ];
20 if ( currState >= 298)
21 currClass = meta[currClass ];
22 }
23 currState = next[base[ currState ] + currClass ];
24 ++charPtr;
25 } while(base[currState ] != 526) ;
26 }

Figure 2: A simplified parsing routine from BC.

particular, the array read at line 13 finds what character class an

individual character belongs to. At line 23, nested array reads are

used to look up the next state of the DFA using the current state

and the input class. We observed that lines 13, 18, and 23 lead to

constraints that are very expensive, many taking more than 10

seconds to resolve, whereas most other constraints only take a

few milliseconds. As a result, the analysis became very slow when

exploring paths in the function.

The first two columns of Table 1 present how the array operations

at lines 13 and 18 are encoded inside the SMT solver, following the

array theory presented in Section 2.1. Variables eci and checkj
denote the simple variables introduced to represent the ith and jth
elements of arrays equivClass and check, respectively. We show

the encodings on the first iteration of the loop, where the while

condition on line 18 becomes simply check[currClass] != 0.
We can observe that the number of clauses in each constraint

is based on the size of the array. When symbolic execution goes

beyond the first iteration of the while loop at line 18, variable

currState becomes symbolic and hence the nested array reads at

line 18 yield a constraint that may be as large as 580 (the array

size of check) × 302 (the array size of base) clauses, because the
solver has to assert each index combination of the two arrays. A

similar encoding happens for line 23. These very large constraints

substantially degrade the performance of the solver. To make the

situation worse, this piece of code is executed almost immediately

once the program is started and is executed by most paths in the

program. Moreover, since the path condition of exiting the do-while

loop is the aggregation of the expensive array read operations (e.g.

at lines 14, 18, and 23), solving the corresponding constraint causes

timeouts. In other words, the analysis is stuck in this function.

Unfortunately, such performance bottlenecks caused by array

operations are common in real-world applications. In fact, in our

experimentation on real-world programs, for example taken from

Binutils and Coreutils, we observed 25 programs that contained

large arrays which determined the paths taken during execution.

2.3 Technique Overview
Array operations inevitably lead to the application of the (expensive)

array theory, and thus the overarching idea of our technique is

to reduce as many array operations as possible through constraint
transformations. Such transformations are conducted on-the-fly to

leverage runtime information to achieve better reduction. More

exactly, we perform the following three transformations.

First, we perform dynamic constant folding on array reads such

that we can preclude both symbolic variables used to denote the

constant values of individual array elements, and formulas passed

to the solver asserting the constant values for individual indexes.

Second, we perform index-based transformation for predicates

whenever the arrays are constant. In essence, we transform predi-

cates involving array reads (e.g. A[i] < 10) to equivalence checks

involving only the index variables (e.g. i ≡ 2 ∨ i ≡ 5 ∨ ...) and

completely remove the array operations.

Third, we observe that many arrays contain repeated values, for

instance themeta array in Figure 2 contains a lot of repeated 1’s. We

perform dynamic range analysis to determine the ranges of indexes

that lead to identical values, and then apply value-based transforma-
tion. This transformation replaces array reads with unique values

guarded by range checks, substantially reducing the number of

formulas passed to the solver. Essentially, this transformation al-

lows the solver to explore multiple possible indexes simultaneously.

Therefore, the solver algorithm has to branch and backtrack much

less frequently, resulting in large performance improvements. This

transformation is even applicable to partially symbolic arrays.

Table 1 column 3 shows the constraints after our transforma-

tions. Variables eci and checkj are replaced with concrete values

through constant folding. Furthermore, at line 18 the complex con-

dition was replaced by a simple constraint on the index, namely

1 ≤ currClass ≤ 579. At line 13 the original assertions for indi-

vidual indexes are replaced with ite expressions that return the

unique values of the array based on a series of range checks. For ex-

ample, according to the source code in Figure 2, equivClass[0] ≡ 0,

equivClass[1 − 8, 11 − 13, ...] ≡ 1, and so on, leading to the trans-

formed encoding for this line. After the transformation, the sym-

bolic execution of BC improves significantly: Within one hour,

KLEE completes the exploration of 828 paths, whereas the original

run explored only 20 paths.

The index-based transformation (i.e. replacing conditions over

array values with conditions over indexes) can lead to significant

speed-ups, because (1) it is no longer needed to communicate to the

solver all the values in the arrays and (2) the constraints on indexes

are typically much simpler than those on the array values, as the

constraints establishing the index-to-offset correspondence are not
added anymore in the formula.

The speed-up produced by the value-based transformation is

achieved by dramatically reducing the number of cases that the

solver needs to examine. Note that nested array reads lead to com-

binatorial explosion of such cases. For simplicity, let us assume

that there are k layers of nesting of array reads (e.g. k = 3 for

A[B[C[i]]]), and each array read has n branches (i.e. the size of the

array). The solver may need to consider O(nk ) cases. However, af-
ter our transformation, if we assume that there arem ranges, the

number of cases to examine is reduced to O(mk ). The reduction is
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Table 1: Original and optimized constraints for the motivating example in Figure 2.

Term Original Encoding Transformed Encoding

Line 13, 1st iteration

currClass = equivClass[*charPtr]

ec0 = 0 ∧ . . . ∧ ec255 = 1∧

*charPtr = 0 → currClass = ec0 ∧

*charPtr = 1 → currClass = ec1 ∧

.

.

.

*charPtr = 255 → currClass = ec255

ite(*charPtr = 0, currClass = 0

ite(1 ≤ *charPtr < 9 ∨ . . . , currClass = 1

ite(*charPtr = 9, currClass = 2,

.

.

.

Line 18, 1st iteration

check[currClass] != 0

check0 = 0 ∧ . . . ∧ check579 = 297∧

check
currClass

, 0

currClass = 0 → check
currClass

= check0∧

.

.

.

currClass = 579 → check
currClass

= check579

1 ≤ currClass ≤ 579

thusO((n/m)k ). In other words, the improvement is exponential in

the number of nested layers.

Our technique is implemented inside KLEE and transparent to

the users. The tool is publicly available and open source.
1

3 DESIGN
A plausible design is to statically transform the subject program

such that an off-the-shelf symbolic execution engine (e.g. KLEE)

can directly produce cost-effective array encoding from the trans-

formed code. However, our experience suggested that there are

limited opportunities to apply such transformations due to the

conservative nature of static analysis. For example, an array may

be constant along many paths but symbolic along others. A static

analysis will thus conservatively assume that it is symbolic. As

such, transformations that require a constant array cannot be ap-

plied. Therefore, we decided to develop our technique as part of

the symbolic execution runtime to exploit the path-sensitivity of

array properties (e.g. an array is constant along a specific path).

The proposed transformations not only require extending the

symbolic execution runtime, but are also closely coupled with the

symbolic execution process itself. In particular, during symbolic

execution we need to distinguish the different scenarios where

the transformations can be applied, such as when the arrays are

constant, symbolic, or mixed (i.e. some array elements are constant

while others are symbolic); when the indexes of array reads/writes

are constant or symbolic; and when the non-array operands in-

volved in an array operation (e.g. x in A[i] > x) are constant or
symbolic. In addition, the transformations change the overall en-

coding process of array-related operations. To precisely describe

our design, we use a highly simplified array-oriented language and

its symbolic execution semantics to explain our extension to the

runtime, the array encodings, and our proposed transformations.

3.1 Semantics
Language. The array-oriented language is presented in Figure 3.

The language allows explicitly annotating symbolic variables, i.e.

variables on which symbolic constraints are built. They are usu-

ally input variables. The language supports simple assignments,

array reads and writes, conditional statements and loops. Despite

its simplicity, it models all the features related to our design and

1
https://srg.doc.ic.ac.uk/projects/klee-array/

Program π ::= s∗
Statement s ::= x = e | x = A[e] | A[ei ] = ev |

if e then s1 else s2 | while (e) s
Expression e ::= x | x̂ | c | e1 op e2
Variable x, y, ... Array A, B, ... SymVar x̂, ŷ, ...

Constant c ::= ... | − 1 | 0 | 1 | ... | true | false
Operator op ::= + | − | ... | > | ≥ | = | , | ∧ | ∨

Figure 3: Array-oriented language.

SymValue v ::= c | x̂ | v1 op v2 | ite(vc , v1, v2)

SymStore σ ::= (Variable | Array[Constant]) → SymValue
PathCond p ::= v | p1 ∧ p2
eval(op, c1, c2) : evaluate the concrete value of (c1 op c2)
SAT(p) : determine if a path denoted by the path condition p is feasible

valTrans(A, vi ) : value-based transformation for array read A[vi ]
with vi the symbolic index expression

idxTrans(A, >, vi , c) : index-based transformation for predicate

A[vi ] > c with vi the symbolic index expression

Figure 4: Definitions for semantic rules.

is sufficient for our discussion. Note that our prototype is imple-

mentedwithin KLEE and hence supports all the real-world language

features that KLEE supports.

Figure 4 introduces a few definitions and functions for the seman-

tic rules. Specifically, SymValue denotes a symbolic expression that

may be a constant, a symbolic variable, a compound expression, or

an ite (if-then-else) expression. Intuitively, one can consider these

as the symbolic values held by program variables during symbolic

execution. SymStore maps a program variable or an array element

to its symbolic expression. Its functionality in symbolic execution

is analogous to memory in concrete execution. Most symbolic exe-

cution engines, including KLEE, have internal data structures that

serve as SymStore. Function eval evaluates an operator (e.g. integer

addition/subtraction). Functions valTrans and idxTrans perform

the value-based transformation and index-based transformation,

which we will discuss in details in Section 3.2. The former returns

a transformed symbolic expression, whereas the latter returns a

transformed predicate (i.e. a boolean formula).

Semantic Rules. The rules in Figure 5 describe how we handle

array-related operations during symbolic execution. They are self-

contained, to some extent, such that the overall symbolic execution

procedure is illustrated, and thus the conditions and the applications

of our transformations can be perceived in the appropriate contexts.



Accelerating Array Constraints in Symbolic Execution ISSTA’17, July 2017, Santa Barbara, CA, USA

The rules consist of two subsets. The first subset defines rules for

evaluating expressions, while the second for evaluating statements.

The evaluation of expressions has the form of σ : e
e
−→ v , meaning

that given the store σ , an expression e is evaluated to a symbolic

expression v . Rule E-Const defines that a constant is evaluated to

itself. A program variable x is evaluated to its symbolic expression

in the store (E-Var), and a symbolic input variable x̂ is evaluated to

itself (E-SymVar). In case of a binary operation, if the two operands

are evaluated to constants, the binary operation is performed, which

subsequently yields a constant outcome (E-ConstFolding). For

instance, x + 2 is evaluated to 5 if x has a constant value 3 in the

current path, e.g. , the preceding write to x is x = 3. Such constant

folding is only performed for the current path explored by the

symbolic execution engine, and hence the name dynamic constant
folding. Note that in the aforementioned example, a compiler cannot

perform static constant folding if there is another preceding write

x = 4 along a different path. However, dynamic constant folding

can yield constants x = 5 and x = 6 when the respective paths are

explored. A binary expression with at least one symbolic operand

yields a symbolic expression (E-SymExpr). For instance, x̂ + 2 is

evaluated to x̂ + 2. Such symbolic values will be used to build

symbolic path constraints.

Statement rules are of the form ⟨s,σ ,p⟩
s
−→ ⟨s ′,σ ′,p′⟩ with the

symbols defined in Figures 3 and 4. In other words, each step of a

statement evaluation may update the statement s , the store σ , and
the path condition p. Rule Arr-Wr-CI specifies that if the index of

an array write is evaluated to a constant, then the corresponding

array element in the store is mapped to the right-hand-side symbolic

value v2. Note that whether v2 is constant is irrelevant. As a side
note, when an array is created, the entries for individual array

elements are also allocated in the store. When the index is symbolic

(Arr-Wr-SI), we do not know which array element needs to be

updated. We hence update all the elements in the array with an

ite expression. For example, a statement A[i] = 3 leads to the

expression σ [A[0] 7→ ite(i = 0, 3,σ [A[0]])], σ [A[1] 7→ ite(i =
1, 3,σ [A[1]])], and so on. Intuitively, this means that depending

on the symbolic index value, each element may either be updated

to the new value, or retain its original value. We note that these

symbolic values are still inside the symbolic execution engine and

not yet passed to the solver. We also note that this representation

could be stored more compactly by the symbolic executor via lists

of array writes [7].

Rule Arr-Rd-CI specifies that an array read with a constant

index results in simply loading the symbolic value from the store

and assigning it to the left-hand-side variable. This rule is crucial

for array constant folding because if the array element is constant,

the array read is completely precluded and replaced with a constant.

For example, in Figure 1 variables ec0, ..., ec255 (column Original En-
coding) are replaced with constants after dynamic constant folding

(column Transformed Encoding). It is also worth noting that dynamic

constant folding requires tracking and evaluating all constant oper-

ations during symbolic execution (e.g. by rule E-ConstFolding).

In other words, the encoding of a statement may require the global

view of the operations that contributed to the operand values of

the statement. Many symbolic execution engines, for simplicity of

Expression Rule: σ : e
e
−→ v

σ : c
e
−→ c (E-Const) σ : x

e
−→ σ [x ] (E-Var)

σ : x̂
e
−→ x̂ (E-SymVar)

σ : e1
e
−→ c1 σ : e2

e
−→ c2

σ : e1 op e2
e
−→ eval (op, c1, c2)

(E-ConstFolding)

σ : e1
e
−→ v1 e2

e
−→ v2 ¬isConst (v1) ∨ ¬isConst (v2)

σ : e1 op e2
e
−→ v1 op v2

(E-SymExpr)

Statement Rule: ⟨s, σ , p ⟩
s
−→ ⟨s′, σ ′, p′⟩

σ : e1
e
−→ c1 σ : e2

e
−→ v2

⟨A[e1] = e2; s, σ , p ⟩
s
−→ ⟨s, σ [A[c1] 7→ v2], p ⟩

(Arr-Wr-CI)

σ : e1
e
−→ v1 σ : e2

e
−→ v2 ¬isConst (v1)

⟨A[e1] = e2; s, σ , p ⟩
s
−→ ⟨s, σ [∀i A[i] 7→ ite(i ≡ v1, v2, σ [A[i]])], p ⟩

(Arr-Wr-SI)

σ : e1
e
−→ c1

⟨x = A[e1]; s, σ , p ⟩
s
−→ ⟨s, σ [x 7→ σ [A[c1]]], p ⟩

(Arr-Rd-CI)

σ : e1
e
−→ v1 ¬isConst (v1) ∀i isConst (σ [A[i]])

⟨x = A[e1]; s, σ , p ⟩
s
−→ ⟨s, σ [x 7→ valTrans(A, v1)], p ⟩

(Arr-Rd-SI-RangeChk)

σ : e1
e
−→ v1 ¬isConst (v1) ∃i, ¬isConst (σ [A[i]])

v ′ = ite(v1 ≡ 0, σ [A[0]], ite(v1 ≡ 1, σ [A[1]], ite(...)))

⟨x = A[e1]; s, σ , p ⟩
s
−→ ⟨s, σ [x 7→ v ′], p ⟩

(Arr-Rd-SI)

σ : e1
e
−→ v1 ¬isConst (v1)

σ : e2
e
−→ c2 ∀i isConst (σ [A[i]])

p′ = p ∧ idxTrans(A, >, v1, c2) SAT (p′)

⟨if A[e1] > e2 then s1 else s2; s, σ , p ⟩
s
−→ ⟨s1; s, σ , p′⟩

(Pred-GT-T)

σ : e1
e
−→ v1 ¬isConst (v1)

σ : e2
e
−→ c2 ∀i isConst (σ [A[i]])

p′ = p ∧ idxTrans(A, ≤, v1, c2) SAT (p′)

⟨if A[e1] > e2 then s1 else s2; s, σ , p ⟩
s
−→ ⟨s2; s, σ , p′⟩

(Pred-GT-F)

Figure 5: Semantic rules.

implementation, adopt a statement-local encoding scheme that en-

codes a statement independently from the others (e.g. encoding line

13 currClass=equivClass[*charPtr] in Figure 2 without referring

to the definitions of equivClass), and hence introduce redundancy

caused by constants.

For an array read with a symbolic index, we have two ways

to proceed. If the array is a constant array, e.g. all elements are

constants like in the example in Figure 2, we apply rule Arr-Rd-SI-

RangeChk to invoke function valTrans and transform the array

read to a set of range check operations, which yield much simpler

constraints. The details of this transformation are discussed in

Section 3.2. If the array is not constant (Arr-Rd-SI), we leverage the

index-to-offset and offset-to-value axioms (§2.1) and use a nested ite

expression to denote the value of x . Intuitively, it means x = A[0]
if e1 evaluates to 0; x = A[1] if e1 evaluates to 1; and so on. In
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Algorithm 1 Value-Based Transformation

1: function valTrans(A, vi )
2: uniqueVal = the set of unique values in A
3: return rangeIte(uniqueVal, A, vi )
4: end function

5: function rangeIte(uniqueVal, A, vi )
6: if |uniqueVal | ≡ 1 then
7: return uniqueVal.pop()
8: end if
9: t = uniqueVal.pop()
10: R = the index ranges such that ∀i ∈ R, A[i] ≡ t
11: C = false
12: for each [lb,ub] ∈ R do
13: C = C ∨ lb ≤ vi ≤ ub
14: end for
15: return ite(C, t , rangeIte(uniqueVal, A, vi ))
16: end function

the implementation, the read-over-write axiom is further applied to

simplify the encoding. Since this procedure is standard, the details

are elided.

Rules Pred-GT-T and Pred-GT-F illustrate how we handle pred-

icates in the form of A[e1] > e2. Rule Pred-GT-T describes the

scenario where the then branch is feasible and specifies that when

(1) the array is constant, (2) the index is symbolic, and (3) the value
in the array read is compared with is a constant (after unfolding), we
will invoke idxTrans to transform the predicate to simpler checks

of the index expression and suppress the array read. Details will be

discussed in Section 3.2. The rule also specifies that the transformed

predicate is added to the path conditionp. The solver is queried with
the resulted path condition through the SAT primitive presented

in Figure 4. If the condition is feasible, the true branch is taken.

Observe that p accumulates the predicates along the path. Rule

Pred-GT-F describes the scenario where the else branch is feasible.

Note that in symbolic execution, it is possible that both branches

are feasible and thus both rules can apply. The evaluation rules

for other comparison operations such as equality or less than are

treated similarly and hence elided. In case the aforementioned three

conditions are not simultaneously satisfied, index-based transfor-

mation will not be triggered. However, value-based transformation

may still be triggered. The evaluation of other statements such as

while statements is standard and hence elided.

3.2 Transformations
We propose three kinds of transformations. The first one is dynamic

constant folding that is conducted by rules E-ConstFolding, Arr-

Rd-CI, and Arr-Wr-CI in Figure 5. In this section, we focus on

discussing the value-based and the index-based transformations.

Value-Based Transformation. As described by rule Arr-Rd-SI-

RangeChk, the value-based transformation is triggered upon an

array read with a constant array and a symbolic index. Informally,

the transformation turns an array read to a switch-case kind of

structure that returns the unique values of the array based on index

ranges, thus avoiding the application of the expensive array theory.

Algorithm 2 Index-Based Transformation

1: function idxTrans(A, op, vi , c)
2: R = the index ranges such that

3: ∀i ∈ R, eval(op,A[i], c) ≡ true
4: C = false
5: for each [lb,ub] ∈ R do
6: C = C ∨ lb ≤ vi ≤ ub
7: end for
8: return C
9: end function

The procedure is described in Algorithm 1. Function valTrans

takes the array and the index expression, and returns another ex-

pression denoting the value of the array read. The algorithm starts

acquiring all the unique values of the array (line 2). For instance,

given the array {0, 0, 2, 2, 0, 0, 3}, uniqueVal = {0, 2, 3}. Note that

such information can be precomputed and reused. The algorithm

then invokes rangeIte to generate a range check-based ite expres-

sion (line 3). Function rangeIte is recursive. At each recursion, if

the number of values in uniqueVal is greater than 1, it pops a value t
from uniqueVal (line 9) and computes the set of index ranges within

which the array elements have the value t (line 10). In the previous

example, for value 0 the set is R = {[0, 1], [4, 5]}. The loop at lines

12–14 constructs a range check condition from R. For example, the

condition for value 0 is 0 ≤ vi ≤ 1 ∨ 4 ≤ vi ≤ 5. The algorithm

finally constructs an ite expression dictating that if the conditionC
holds, the value of the expression is t , otherwise another ite expres-
sion is constructed from the remainder of the uniqueVal (line 15).
The recursive procedure terminates when there is only one value

left in uniqueVal (lines 6–7), and we simply return the value. For

our example, the resulting expression is the following:

ite(0 ≤ vi ≤ 1 ∨ 4 ≤ vi ≤ 5, 0, ite(2 ≤ vi ≤ 3, 2, 3))

Index-Based Transformation. As illustrated by rule Pred-GT-T,

the index-based transformation is triggered upon a comparison op-

eration of an array read that satisfies the three conditions specified

in the description of the rule (§3.1). The transformation turns the

comparison operation into a conjunctive formula that compares in-

dex ranges without the explicit array read, avoiding the application

of the array theory.

The procedure is described in Algorithm 2. The algorithm scans

the array to identify the index ranges that satisfy the comparison

operation (lines 2–3). For example, given A = {0, 0, 3, 3, 0, 0, 4} and

the comparison A[vi ] < 3, R = {[0, 1], [4, 5]}. The loop at lines

4–6 constructs a formula that checks if the given symbolic index

vi falls into these ranges as a disjunction of the index ranges. For

our example, the condition is 0 ≤ vi ≤ 1 ∨ 4 ≤ vi ≤ 5. Note that

the index-based transformation is different from the value-based

transformation as the values of the array are not explicitly present

in the transformed formula. The index-based transformation also

leads to more concise encodings since it completely replaces the

original predicate.

Interplay of Transformations. The transformations we propose

can achieve synergy. Dynamic constant folding can be combined

with the other two under all circumstances. Consider the encod-

ings of line 18 in Figure 1 (i.e. the first iteration of the loop while
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(check[base[currState]+currClass]!=currState)). Dynamic constant

folding replaces base[currState]with 0 and currStatewith 0. The re-
sulting comparison check[currClass]!=0 is then further transformed

by the index-based transformation to 1 ≤ currClass ≤ 579.

The value- and index-based transformations also work together.

Our strategy is to try to apply the index-based transformation first,

and if unsuccessful try the value-based transformation. For instance,

on line 18 in Figure 1, in the first iteration we can apply the index-

based transformation, while in the second iteration, when currState
becomes symbolic, we apply the value-based transformation.

3.3 Handling Mixed Arrays
The value-based transformation and the index-based transforma-

tion described previously can only work when every value in an

array is concrete. While we have found this is true in many pro-

grams, arrays frequently contain a mix of both concrete and sym-

bolic values. It is hence highly desirable to optimize encodings for

those arrays. Next, we discuss our extension to the value-based

transformation to support mixed arrays. Recall that the transfor-

mation turns an array read to a nested ite expression with each

branch denoting a range of indexes that lead to a unique value.

A plausible solution is to perform the same transformation to the

concrete part of the array and then include the original array read

in the last else branch of the nested ite to denote all the remaining

symbolic array elements. For instance, an array read A[vi ] with
A = {0, 0,v1,v2, 2, 2} (v1 and v2 symbolic expressions) is trans-

formed to ite(0 ≤ vi ≤ 1, 0, ite(4 ≤ vi ≤ 5, 2, A[vi ])). The
method tries to leverage the constant elements as much as possible

and only resorts to the array read when necessary. While the trans-

formed expression is equivalent to the original read, we found that

the presence of A[vi ] in the ite nonetheless triggers the expensive

array theory, which prevents any improvement.

The key is thus to avoid any explicit array operation. Therefore,

our solution is to enumerate individual symbolic array elements in

separate ite branches. For example, the above array read example

is transformed to:

ite(0 ≤ vi ≤ 1, 0, ite(4 ≤ vi ≤ 5, 2, ite(vi = 2, v1, v2)))

4 IMPLEMENTATION
We implemented our transformations inside the KLEE symbolic ex-

ecution engine [6]. The dynamic constant folding and value-based

transformations can be applied as soon as the symbolic executor

reaches an instruction involving an array read. More precisely, we

implemented these constraint transformations as program expres-

sion optimizations using KLEE’s APIs.

In the case of the dynamic constant folding transformation, we

rewrite the array read into a simple constant value whenever the

array and the index are both constants. Since the transformation

is path-sensitive, we check that no previous write operation to

the array occurs with either a symbolic index, or with a symbolic

value at the same array location. In the case of the value-based

transformation, we generate an ite expression when the array is

concrete and the index is a symbolic expression. As discussed in

Section 3.3, the value-based transformation can be applied even if

the array is only partially concrete.

While the first two transformations are generally applicable,

the index-based transformation can only be employed for boolean

conditions. We thus invoke the index-based transformation during

the execution of a branch instruction. In this case, it is crucial to

implement the evaluation function eval in Algorithm 2 without

relying on the constraint solver, which would become a major

performance bottleneck for large arrays. Instead, the eval function is
invoked for each possible concrete index of the array, and evaluated

using KLEE’s constant folding features. In this way, we are able to

handle even large arrays in a few microseconds.

Integrating the value- and index-based transformations requires

careful design. If we allow the value-based transformation to op-

timize an array read as soon as it is performed, it then becomes

difficult to apply the index-based transformation, as the read is now

a large ite expression. Therefore, we first try to apply the index-

based transformation, and if it fails, we then use the value-based

one (§3.2). The main disadvantage of such approach is that we need

to implement the value-based transformation at the level of boolean

conditions rather than array reads, which requires extra work to

scan the reads encountered in boolean conditions.

5 EXPERIMENTAL VALIDATION
We conduct an experimental analysis to validate our transforma-

tions. We consider three validation questions. The first research

question (RQ1) is about correctness: We want to make sure that

our transformations yield new constraints that are semantically

equivalent to the original ones.

The second research question (RQ2) is about effectiveness: We

want to ensure that our transformations lead to improved perfor-

mance. Specifically, we want to verify that symbolic execution

explores programs faster when our transformations are applied,

without disrupting performance when they cannot be applied.

The third research question (RQ3) is about significance: We want

to validate that the improvements we obtain with our transforma-

tion can make an important difference on code coverage, that is

they enable the symbolic executor to explore parts of a program

that would have been unreachable otherwise.

5.1 Evaluation Setup
We consider 104 programs written in C from five different subjects

that can be successfully analyzed by the KLEE symbolic executor.

For each program, we manually derive the set of symbolic argu-

ments to use in combination with KLEE tomaximize the exploration

of the symbolic executor. When possible, we use the same argument

configuration as in prior work [6]. The subjects are:

(1) Bandicoot [2] v6, a programming system with a set-based

programming language. We focus on the compiler.

(2) BC [17] v1.06, an arbitrary-precision calculator that solves

mathematical expressions written in a C-style language.

(3) Binutils [18] v2.27, a collection of 12 programs to analyze, link,

and manipulate binaries from the binutils directory.
(4) Bzip2 [4] v1.0.6, a compression utility.

(5) Coreutils [19] v6.11, a collection of 89 programs for file, text,

and shell manipulation.
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Table 2: Subjects considered in the evaluation with number
of lines of code, conditional branches, and arrays.

Subject C SLOC LLVM Arrays
Branches No. Bytes

Bandicoot 9,695 1,582 42 11,351
BC 10,150 1,513 18 10,163
Binutils 1,582,690 48,326 290 214,056
Bzip2 5,823 1,608 1 4,096
Coreutils 15,065 62,713 659 39,149

Table 2 briefly characterizes the subject programs. For each sub-

ject (Subject) we report the number of C source lines of code mea-

sured by cloc [11] (C SLOC), the number of LLVM bitcode con-

ditional branches as reported by KLEE (LLVM Branches), and the

number (No.) and size (Bytes) of the arrays statically found in the

subjects (Arrays). To obtain the data on arrays, we rely on a static

analysis on the LLVM bitcode that focuses on global arrays in the

subject only. The analysis thus misses both array definitions local

to functions, and dynamically allocated arrays.

We use KLEE commit ad22e84 compiled with LLVM 3.4.2 [23]

and STP 2.1.2 as the constraint solver [16]. We conduct our exper-

iments on two identical servers running Ubuntu 14.04, equipped

with an Intel processor (8 cores) at 3.5 GHz and 16GB of RAM. For

brevity we omit other details of the KLEE setup but we make the

experiments available for further analysis.
2

5.2 Correctness (RQ1)
We validate the correctness of our transformation by checking that

symbolic execution follows identical paths with and without our

transformations. The main challenge is to configure KLEE to behave

deterministically across runs. This is hard to achieve since KLEE

relies on a wide variety of timeouts (e.g. for constraint solving),

time-bounded search heuristics, concrete memory addresses (as

those returned by malloc), and other environmental values (e.g.

file descriptors). To force KLEE to behave as deterministically as

possible, we use depth-first search (DFS) strategy, a sandbox for file

system operations, and rely on a deterministic memory allocator.

We proceed with the following evaluation process:

(1) We create a set of subject programs that KLEE symbolically

executes deterministically as follows:

(a) We run KLEE with the DFS strategy and a time limit of

30 minutes, and we record the number of instructions

executed as well as the execution trace.

(b) We run KLEE again with DFS and we limit the number

of instructions executed to the value obtained in step (a).

(c) We compare the execution traces between steps (a) and

(b). We consider the program for further analysis if and

only if there is no mismatch.

(2) We then activate our transformations in KLEE one at a time on

the set of subject programs selected at step (1). We configure

KLEEwithDFS strategy andwe limit the executed instructions

to the value obtained at step (1) (a).

(3) We compare for each run the execution traces against those

obtained at step (1) (b). We report any mismatch as a failure

of our transformation in preserving semantics.

2
https://srg.doc.ic.ac.uk/projects/klee-array/

Table 3: Subjects where our transformations do not apply.

cat cksum echo env nl printenv
runcon tee yes cxxfilt elfedit nm
objcopy objdump readelf size strings strip

Results. We report in Table 3 and Table 4 the 57 programs selected

through the selection process described at step 1 (column Subject).
The selection process discards 47 programs where the behavior of

KLEE is not deterministic. Table 3 lists the benchmarks for which

execution was deterministic, but our transformations were never

triggered, likely because they do not use (largely) constant arrays

during execution. The runtime overhead caused by our technique

is always less than 1% for these programs.

Table 4 shows the benchmarks for which our transformations

were triggered. We report the result on correctness (equivalence)

among runs in column Eq, where we consider the experiment a

success (✓) if and only if all transformations execute the same

instructions as the Baseline run, and a failure (✗) otherwise.

As can be seen, our transformations produce semantically equiv-

alent constraints that lead to the exploration of identical paths and

instructions in all but two cases: ld and ptx. In ld, the unoptimized

version reaches an expensive array query and times out, while KLEE

with our transformations can successfully solve the queries. Due to

such a timeout in the unoptimized version, the two executions di-

verge. However, in this case, this exploration divergence highlights

the benefits of our transformations, rather than indicating issues in

the semantic equivalence of the constraints.

In ptx, KLEE explores different paths when run with the com-

bined transformations because the unoptimized version is forced

to concretize symbolic data due to a user-defined limit on the size

of symbolic array reads. However, when run with the combined

transformation, KLEE optimizes some constraints at the beginning

of the execution, and can proceed without concretizing the read

expression. Again, this divergence highlights the benefits of our

transformations.

5.3 Effectiveness (RQ2)
We evaluate the effectiveness of our transformations by assessing

their ability to speed-up symbolic execution. We report the results

in Table 4. The column Baseline shows the runtime for the unmod-

ified KLEE runs in seconds. Notice that for a few programs, KLEE

terminates to explore all feasible paths within the time limit (e.g.

basename). Moreover, although we run KLEE with a 1800 seconds

limit, the actual execution times slightly differ due to both addi-

tional checks performed to limit the exploration to a given number

of instructions, and variations in constraint solving time.

For each transformation, we report the runtime in seconds (Time),
the speed-up over the unmodified run computed as the ratio be-

tween the Baseline runtime and the runtime with the transforma-

tion enabled (S), and the number of invocations of each transfor-

mation (Inv.). Benchmarks are sorted by the speed-up achieved by

the combined transformation (Column Combined).
From the results, we can notice that our transformations indeed

improve performance significantly in many cases. In particular, in

12 cases our combined transformations speed-up symbolic execu-

tion by more than 1.35x, and in 8 cases by over 2.50x. The largest

improvements are seen for factor and BC with speed-ups of 27.46x
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Table 4: Runtime of different versions of KLEE running the same instructions: Baseline is the unmodified KLEE, Constant,
Index-based, and Value-based represent KLEE runningwith each of our transformations, and Combined is KLEE runningwith
all of them. For each transformation, S is the speedup over the Baseline, and Inv is the number of successful invocations of
each transformation. Eq has a checkmark for the programs on which all transformations preserve semantics.

Program Eq Baseline Constant Index-based Value-based Combined
Time (s) Time (s) S Inv. Time (s) S Inv. Time (s) S Inv. Time (s) S Inv.

factor ✓ 1,815.21 1,873.34 1.02x 1,626 78.84 24.20x 171 136.90 13.94x 159 69.48 27.46x 171
bc ✓ 1,834.82 1,830.64 1.01x 0 472.62 3.90x 354 260.33 7.12x 312 218.61 7.78x 632
tsort ✓ 1,801.62 1,755.57 1.03x 0 570.62 3.16x 13 568.36 3.17x 340 433.60 4.16x 572
bzip2 ✓ 1,820.49 476.42 3.82x 58,448 1,805.12 1.01x 0 1,805.19 1.01x 0 482.63 3.77x 59,515
expr ✓ 1,799.20 1,819.47 0.99x 0 697.60 2.58x 11 1,785.36 1.01x 107 479.44 3.75x 259
bandicoot ✓ 1,790.93 1,739.23 1.03x 120 1,202.22 1.49x 78 175.93 10.18x 562 497.73 3.60x 651
ar ✓ 1,800.72 1,795.91 1.00x 0 815.05 2.21x 147 232.57 7.74x 341 511.68 3.52x 476
[ ✓ 57.16 47.84 1.20x 16 34.32 1.67x 9 56.39 1.01x 5 22.82 2.50x 51
nice ✓ 1,799.79 1,162.12 1.55x 12,444 1,763.22 1.02x 22 1,056.71 1.70x 16 1,053.71 1.71x 910
od ✓ 1,823.44 1,546.20 1.18x 28,136 1,318.24 1.38x 824 1,489.90 1.22x 27,425 1,085.17 1.68x 1,150
users ✓ 20.75 18.38 1.13x 0 17.57 1.18x 30 18.24 1.14x 0 15.17 1.37x 30
dirname ✓ 13.39 11.71 1.14x 0 10.70 1.25x 18 13.27 1.01x 0 9.88 1.36x 18
unexpand ✓ 1,824.42 1,187.02 1.54x 2,747,586 1,726.17 1.06x 46 1,797.74 1.01x 0 1,383.94 1.32x 384
as ✓ 1,351.43 1,353.75 1.00x 0 1,058.72 1.28x 4,811 648.33 2.08x 2,706 1,038.53 1.30x 5,172
join ✓ 1,836.76 1,802.21 1.02x 0 1,535.66 1.20x 21 1,807.86 1.02x 0 1,507.14 1.22x 21
fmt ✓ 1,813.96 1,706.96 1.06x 53,664 1,567.08 1.16x 2,622 1,807.46 1.00x 0 1,560.29 1.16x 3,038
csplit ✓ 1,808.87 1,828.12 0.99x 68 1,562.78 1.16x 526 1,802.06 1.00x 25 1,570.10 1.15x 786
id ✓ 1,863.00 1,851.98 1.01x 0 1,822.29 1.02x 6 1,821.81 1.02x 0 1,621.89 1.15x 6
basename ✓ 14.87 13.79 1.08x 0 13.80 1.08x 6 14.59 1.02x 0 13.17 1.13x 6
tr ✓ 1,794.26 1,721.41 1.04x 0 1,675.34 1.07x 959 1,665.11 1.08x 4,125 1,592.90 1.13x 1,823
rmdir ✓ 1,817.25 1,802.29 1.01x 0 1,640.48 1.11x 1,199 1,821.13 1.00x 0 1,620.63 1.12x 1,199
comm ✓ 1,830.82 1,814.43 1.01x 0 1,797.61 1.02x 12 1,824.62 1.00x 0 1,686.12 1.09x 12
seq ✓ 1,794.71 1,602.25 1.12x 3,315 1,744.43 1.03x 10 1,652.69 1.09x 0 1,653.37 1.09x 10
base64 ✓ 1,838.75 1,800.52 1.02x 1,196,109 1,710.60 1.07x 42 1,858.64 0.99x 71,049 1,724.70 1.07x 42
sleep ✓ 1,813.49 1,818.46 1.00x 0 1,711.49 1.06x 574 1,818.79 1.00x 0 1,709.58 1.06x 574
link ✓ 1,813.22 1,809.15 1.00x 0 1,706.63 1.06x 574 1,815.61 1.00x 0 1,704.86 1.06x 574
dircolors ✓ 1,825.17 1,790.52 1.02x 481,704 1,745.48 1.05x 12 1,814.46 1.01x 0 1,731.96 1.05x 12
mkfifo ✓ 1,804.43 1,825.65 0.99x 0 1,715.44 1.05x 574 1,823.02 0.99x 0 1,719.93 1.05x 574
expand ✓ 1,825.98 1,818.62 1.00x 0 1,775.52 1.03x 181 1,815.85 1.01x 0 1,775.12 1.03x 181
wc ✓ 1,835.07 1,847.77 0.99x 0 1,766.08 1.04x 16 1,789.70 1.03x 0 1,775.23 1.03x 16
sort ✓ 1,825.29 1,791.46 1.02x 0 1,769.29 1.03x 1 1,777.55 1.03x 0 1,769.31 1.03x 1
mknod ✓ 1,808.77 1,802.50 1.00x 0 1,781.57 1.02x 118 1,814.71 1.00x 0 1,748.34 1.03x 118
ln ✓ 1,848.82 1,875.80 0.99x 0 1,794.97 1.03x 368 1,818.30 1.02x 0 1,808.79 1.02x 368
fold ✓ 1,839.19 1,847.24 1.00x 0 1,819.46 1.01x 2 1,810.92 1.02x 2 1,812.61 1.01x 2
setuidgid ✓ 1,805.31 1,835.57 0.98x 534 1,777.02 1.02x 85 1,817.13 0.99x 0 1,783.46 1.01x 85
whoami ✓ 1,810.00 1,844.74 0.98x 0 1,804.21 1.00x 26 1,814.63 1.00x 0 1,794.64 1.01x 26
logname ✓ 1,803.89 1,846.51 0.98x 0 1,803.70 1.00x 26 1,817.37 0.99x 0 1,802.20 1.00x 26
readlink ✓ 1,849.33 1,875.24 0.99x 0 1,810.44 1.02x 6 1,821.32 1.02x 0 1,849.94 1.00x 6
tty ✓ 1,816.64 1,860.85 0.98x 0 1,819.59 1.00x 12 1,820.17 1.00x 0 1,818.15 1.00x 29
ld ✗ Unoptimized run experiences solver timeout
ptx ✗ Unoptimized run concretizes symbolic data

and 7.78x respectively. Both programs contain complex nested reads

on large arrays, where the benefits of our transformations are ex-

ponential (§ 2.3). In absolute terms, the runtime of factor and BC
decreases from 30 minutes to just 1 and 4 minutes, respectively.

Other examples of programs that greatly benefit from our trans-

formations are tsort, bzip2, expr, ar, and Bandicoot, all with over

3.50x speed-up. All the aforementioned subject programs contain

large arrays, which result in complex constraints during symbolic

execution. The large improvements in all these subject programs

demonstrate that our transformations are successful in causing

efficient array constraint encoding and solving.

The results also show that our transformations do not negatively

impact performance. Indeed, while there are benchmarks for which

we see no (e.g. logname, or tty) or insignificant speed-ups (e.g. 1.01x
for whoami), there are no benchmarks on which our combined

transformations cause noticeable performance degradation.

The results also show that the different transformations are

largely complementary to each other. For example, the dynamic

constant folding transformation is mainly responsible for the speed-

up in bzip2 and unexpand; the value-based transformation for the

speed-up in ar, Bandicoot, and nice; the index-based transformation

for the speed-up in expr and factor.
In general, the transformations combine well with each other,

with the combined version usually performing better than the in-

dividual transformations (24 out of 39 cases). However, there are

cases in which the individual transformations perform better. For

instance, unexpand and seq show the largest improvement for the

dynamic constant folding transformation, ar and as for the value-
based transformation, and csplit for the index-based transformation.

In the cases of unexpand and seq, when the individual transfor-

mations are applied, value-based transformation and index-based

transformation get precedence over the dynamic constant folding.

In those circumstances, the array reads are transformed before

constant folding could be applied. Given the results obtained in

the evaluation, we plan to extend our dynamic constant folding

transformation to handle such missed opportunities.

In the cases of ar, as, and csplit, the performance degradation by

the combination happens when the cases where index-based trans-

formation can be applied are a super set of those where value-based
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transformation can be applied. Hence in the combined transforma-

tion, these cases went through both transformations, but yielded

the benefits of just one transformation. We plan to develop a light-

weight analysis to identify undesirable interference.

5.4 RQ3: Significance
We evaluate the significance of our transformations by analyzing

the improvement in code coverage achieved on programs where

the performance of symbolic execution is limited due to complex

constraints over arrays. We use the combined transformation as it

is the most generally applicable, and obtains the largest increases

in performance. We conduct the experiment on BC.

We run KLEE unmodified and KLEE with the combined transfor-

mations for 6 hours each and measure the resulting code coverage.

In this experiment, we use the default search strategy of KLEE,

which employs heuristics to steer execution towards uncovered

code. To allow symbolic execution to achieve significant coverage,

we need to use large symbolic buffers as input for BC. However,

it is well-known that large symbolic buffers cause search space

explosion. To limit the search space, we concretize portions of the

symbolic input buffers. This strategy is very useful when perform-

ing analysis on large real-world applications as it essentially allows

the user to guide the analysis towards specific parts of code they

are interested in testing. For example, this modification allows us

to explore code in BC responsible for parsing function and array

declarations. Such code is only executed when specific keywords

of the BC language are used in a specific order. It is thus unlikely

that pure random exploration of the program would reach these

functions in a reasonable amount of time.

Our results show that our combined transformations signifi-

cantly improve statement coverage from 35% to 59% (+68%), and

branch coverage from 39% to 67% (+71%). The unmodified KLEE run

quickly reaches code portions with large and complex constraints

over arrays. As a result, solving constraints becomes extremely

expensive, and the constraint solver reaches the timeout limit 10

times even with a budget of 200 seconds. Conversely, KLEE with

our transformations benefits from the optimized array constraint

encoding and never suffers from timeouts.

This experiment on BC and the results obtained on ld and ptx in
Section 5.3 support our hypothesis that our transformations indeed

improve the performance of constraint solving over arrays, and

enable symbolic execution to explore parts of the code that would

be unreachable otherwise.

5.5 Threats to Validity
We acknowledge potential problems that might limit the validity

of our experimental results. Here we briefly discuss the counter-

measures we adopted to mitigate such threats. The internal validity

depends on the correctness of our prototype implementation, and

may be threatened by the evaluation setting and the execution of

the experiments. We carefully tested our prototype with respect

to the original KLEE baseline. To validate the correctness of our

transformation we also added research question RQ1.

Threats to external validity may derive from the selection of

case studies. We validated our transformations on 57 real-world

subjects. Different results could be obtained for different subjects.

By construction, our approach does not produce any valuable result

on systems that do not include any arrays at all, or symbolic arrays

only. However, our experiments show that our transformations do

not harm performance in these cases.

6 RELATEDWORK
Constraint solving is widely-acknowledged as one of the main

scalability challenges in symbolic execution [8, 9]. Prior work has

proposed several constraint solving optimizations, such as simpli-

fying expressions via standard arithmetic transformations [7, 27],

restricting the domain of formulas to eliminate potentially irrele-

vant constraints [15], splitting constraints into independent sub-

sets [7], caching query results [7], caching solutions/counterex-

amples and exploiting subset/superset relationships between con-

straint queries [6], reusing solutions across runs [31] or even be-

tween symbolic execution engines [1, 21, 29], and employing a

portfolio of constraint solvers [26].

Prior work also studied the impact on symbolic execution of

both semantics-preserving and semantics-altering transformations.

Our work is inspired by the idea paper [5] and is orthogonal to the

approaches in [13, 30], with which it could be combined.

While the optimizations previously proposed can benefit con-

straints involving arrays, none of them are specifically targeted

toward such constraints. As far as we know, we are the first to

propose optimizations focused on constraints involving arrays, op-

erating at the level of the symbolic execution engine. However,

optimizations targeting arrays have been proposed at the level of

SMT solvers. In particular, the STP solver [7, 16] proposed two such

optimizations, one targeting arrays with constant indexes and the

other arrays with symbolic indexes. Note that KLEE uses STP as

its default solver (and we used STP during our experiments) so it

already benefits from these optimizations. Nevertheless, our trans-

formations provide additional speed-ups that are out of reach at

the solver level because program semantics and execution contexts

are largely invisible to the solver. By the time the arrays are sent

to the solver, it is to some extent already too late to optimize the

query—the extra constraints communicating the array values have

already been created.

7 CONCLUSION
Arrays are prevalent in real-world code, and represent one of the

main challenges in constraint solving for symbolic execution. In this

paper, we propose a novel technique to speed-up array constraints,

based on transformations that replace array operations with simpler

operations on their indexes and values. As such, the expensive array

theory is not triggered inside the solver, leading to substantial

reductions in constraint solving time. Our results on a large set

of real-world programs show that our technique is applicable to a

significant portion of these programs and the performance gains

can be as large as 27x. This in turn enables testing of parts of the

code which would be unreachable without our transformations.
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