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ABSTRACT

One of the distinguishing characteristics of software systems
is that they evolve: new patches are committed to software
repositories and new versions are released to users on a
continuous basis. Unfortunately, many of these changes
bring unexpected bugs that break the stability of the system
or affect its security. In this paper, we address this problem
using a technique for automatically testing code patches.
Our technique combines symbolic execution with several
novel heuristics based on static and dynamic program anal-
ysis which allow it to quickly reach the code of the patch.

We have implemented our approach in a tool called KATCH,
which we have applied to all the patches written in a com-
bined period of approximately six years for nineteen mature
programs from the popular GNU diffutils, GNU binutils
and GNU findutils utility suites, which are shipped with
virtually all UNIX-based distributions. Our results show
that KATCH can automatically synthesise inputs that signif-
icantly increase the patch coverage achieved by the existing
manual test suites, and find bugs at the moment they are
introduced.

Categories and Subject Descriptors

D.2.4 [Software/Program Verification|: Reliability;
D.2.5 [Testing and Debugging]: Symbolic execution
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Figure 1: KATCH is integrated in the software
development life cycle and automatically generates
inputs that execute newly added or modified code.

1. INTRODUCTION

A large fraction of the cost of maintaining software is
associated with detecting and fixing errors introduced by
recent patches. It is well-known that patches are prone to
introduce failures [20,42]. As a result, users often refuse
to upgrade their software to the most recent version [11],
relying instead on older versions which are frequently prone
to critical bugs and have a reduced set of features.

In this paper, we aim to improve the quality of software
patches by providing the means to automatically test them.
Over the last years, we have seen significant advances in test
generation techniques [3,12,17,25, 31, 38,43]; in particular,
dynamic symbolic execution has proved to be a good fit
for comprehensively testing real software [5-8,14,18,19, 35,
37], through its ability to systematically explore different
program paths, accurately reason about memory, and in-
teract with uninstrumented code. The vast majority of
work on dynamic symbolic execution has focused on “whole-
program” testing, in which all parts of the program are
treated equally. However, more recent work has looked at
various forms of incremental or directed dynamic symbolic
execution, where the testing effort is focused on code that
has changed from one version to the next [2,27,32,33,36,41].
Despite this recent progress, we are still far away from the
goal of quickly and automatically generating test cases that
cover code changes in real programs.

This paper aims to improve the state of the art in the area
by (1) developing novel techniques that can rapidly cover re-
cently changed code, and (2) applying these techniques to a
large number of indiscriminately-chosen patches (specifically
to all patches written in a combined period of six years for
GNU diffutils, GNU binutils and GNU findutils).



At a high level, we envision a system which we call kaTcn,!
that would be fully integrated in the software development
cycle, as shown in Figure 1. When a new patch is sent
to the repository, our system automatically explores paths
through the patch code using dynamic symbolic execution
augmented with several patch-aware heuristics, and pro-
vides to the developer a set of test inputs that achieve high
coverage of the patch code (which could be added to the
regression suite), and a report of any bugs introduced by
the patch, accompanied by actual inputs that trigger them.
To be adopted by developers, a system like KATCH has to
meet several requirements: (1) it has to be easy-to-use,
ideally fully automatic; (2) it has to be fast, to encourage
developers to run it after every single commit; and (3) it
has to demonstrate “value” by finding bugs and generating
inputs that cover more code through the patch than existing
manual test suites. In this paper, we provide some promising
evidence that such a system could become a reality. In our
experiments on all the patches written in a combined period
of around six years for nineteen applications, KATCH was
able to significantly increase the overall patch coverage and
find fifteen distinct bugs, while spending only a relatively
short amount of time per patch.

In summary, the main contributions of this paper are:

1. A technique for patch testing that combines symbolic
execution with several novel heuristics based on pro-
gram analysis that effectively exploit the program struc-
ture and existing program inputs;

2. A flexible system called KATCH, based on the state-
of-the-art symbolic execution engine KLEE that imple-
ments these techniques for real C programs;

3. A thorough evaluation of our technique on all patches
made to nineteen programs in the GNU diffutils, GNU
binutils and GNU findutils application suites over a
cumulative period of approximately six years.

The rest of this paper is structured as follows. We give
a brief overview of KATCH (§2), describe our approach in
detail (§3), and present the most important implementation
details (§4). We then evaluate KATCH (§5), discuss related
work (§6) and conclude (§7).

2. OVERVIEW

While the code of real software systems is frequently chang-
ing, these changes—or patches—are often poorly tested by
developers. In fact, as we report in §5.1, developers often
add or modify lines of code without adding a single test
that executes them! To some extent, we have not found this
result surprising, as we know from experience how difficult
it can be to construct a test case that covers a particular
line of code.

While the problem of generating inputs that cover specific
parts of a program is generally undecidable, we believe that
in many practical circumstances it is possible to automati-
cally construct such inputs in a reasonable amount of time.
Our system KATCH uses several insights to implement a
robust solution. First, KATCH uses existing test cases from
the program’s regression suite—which come for free and

!The name comes from K[LEE]+[P]ATCH. KLEE is an open-source
symbolic execution engine on which KATCH is based.
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Figure 2: The main stages of the KATCH patch
testing infrastructure.

often already execute interesting parts of the code—as a
starting point for synthesising new inputs. For each test case
input, KATCH computes an estimated distance to the patch
and then selects the closest input (§3.2) as the starting point
for symbolic exploration. Second, symbolic execution pro-
vides a framework for navigating intelligently through the
intricate set of paths through a program, starting from the
trace obtained by running the previously identified closest
input. To reach the patch, KATCH employs three heuristics
based on program analysis: greedy exploration, informed
path regeneration (§3.3) and definition switching (§3.4).

Figure 2 presents the high-level architecture of KATCH.
The framework takes as input a program, a set of existing
program inputs and a patch description in the form of a diff
file and automatically constructs new inputs that execute
the patch code by following three steps.

Patch preprocessing is responsible for parsing the raw patch
file and splitting it into lines of code. Lines of code that
are part of the same basic block (and thus always executed
together), are grouped to form a single target. Targets which
are already executed by the program’s regression suite are
dismissed at this step. For each remaining target, the fol-
lowing stages are executed to synthesise an input which
exercises it.

Input selection leverages the fact that real applications
already come with regression suites that contain a rich set
of well-formed inputs created by the developers. Input se-
lection takes as input the program, a target and an existing
test suite. It then associates with each of the test inputs
a distance estimating the effort required to modify it such
that it executes the target. The closest input to the target
is then used in the next stage.

The last step combines symbolic execution with three
heuristics based on program analysis to derive a new input
that exercises the target, starting from the input selected at
the previous step. The role of symbolic execution is twofold.
First, it provides a framework for inspecting the program
branch decisions and their relation to program inputs, and
gives the means to generate new inputs by changing the
outcome of particular branches. Second, it thoroughly
checks program operations such as memory accesses and
assertions, in order to find errors. The heuristics based on
program analysis complement symbolic execution by partly
mitigating its scalability problems and steering it actively
towards the target.

To scale this process to multiple systems and hundreds or
thousands of patches, we have also built an infrastructure
which executes automatically, as appropriate, each of the
previous steps, requiring no changes to the systems under
test nor to their regression suites (§4).



3. KATCH

This section describes in more detail the KATCH patch
testing infrastructure: patch preprocessing (§3.1), input se-
lection with weakest preconditions (§3.2), greedy exploration
with informed path regeneration (§3.3) and definition switch-

ing (8§3.4).

3.1 Patch Preprocessing

The first stage of our analysis is mainly responsible for
retrieving each program version from the version control sys-
tem, determining the differences from the previous version—
i.e. the patch—and breaking this patch into lines which
are then handled individually by the subsequent steps. In
addition, the lines are filtered and consolidated when appro-
priate, as described next.

While each line in a patch is a potential target to KATCH,
in practice, many lines do not need to be considered. First,
source code contains many non-executable lines, such as
declarations, comments, blank lines, or lines not compiled
into the executable due to conditional compilation direc-
tives. Second, lines which are part of the same basic block
are always going to be executed together, so we only need to
keep one representative per basic block. Finally, we are not
interested in lines already covered by the system’s regression
test suite.

The patch preprocessing stage is responsible for elimi-
nating all these lines and works in two steps: a first step
performs a simple static pass to eliminate non-executable
code and all but one line in each basic block, and a second
step runs the program’s regression suite to eliminate lines
already covered by its test cases.

This results in a set of lines which are on the one hand
executable and on the other hand are not executed by the
program’s test suite—which we call targets. Each of them is
processed individually in the following stages.

3.2 Seed Selection with Weakest Preconditions

Our input synthesis technique starts from an existing pro-
gram input—called the seed—extracted from the program’s
test suite, and iteratively changes it. The ideal seed executes
code which is close to the target, in order to allow KATCH
to quickly steer execution by switching only a few branch
outcomes to reach the target.

To estimate the distance between the path executed by
a seed and the target, we calculate the (static) minimum
distance in the program’s interprocedural control flow graph
(CFG) between each basic block exercised by the seed and
the target basic block. Intuitively, the effort of symbolic ex-
ecution lies in switching the outcome of branch statements,
therefore we compute this distance in terms of the number
of branch statements between the two basic blocks.

We also simplify the minimum distance computation by
not requiring it to be context-sensitive. To do this, we note
that pairs of matched function calls and returns should not
contribute to the distance between two basic blocks. In
practice, this means that we can “shortcut” function calls,
i.e. each function call introduces an edge to the instruction
immediately following the call, in addition to the edge to the
target function. In turn, shortcutting function calls allows
us to remove all return edges, simplifying the analysis.

However, the estimated distance outlined so far—which
we call C-flow distance, as it only takes the control flow
into account—can select inputs which exercise paths close

C—flow WP
1 if (input < 100) 2 4
2 £0); 1 4
3
4 if (input > 100) 3 3
5 if (input > 200) 2 2
6 f(input) 1 1
7
8 wvoid f(int x) {
9 if (x == 999) 1 1
10 // target 0 0
11}

Figure 3: Code snippet with instructions annotated
with the minimum distance to the target, computed
using only control-flow analysis (C-flow column) and
control-flow analysis combined with our weakest
precondition variant (WP column).

to a target, but cannot be easily changed to actually reach
the target. In the interest of simplicity, we show a contrived
example in Figure 3 to illustrate such a scenario. The code
snippet takes a single integer as input and uses it to decide
whether to call function £, which contains the target. The
only input which exercises the target is 999. The figure also
shows the C-flow distance from each instruction to the tar-
get. For example, the C-flow distance for the instruction at
line 5 is 2, because the shortest path to the target traverses
two branches (on lines 5 and 9).

For simplicity, assume that we only want to assess whether
input 50 is better than input 150. From a pure control-
flow perspective, 50 appears to be a better choice because
it exercises function £ and gets to the if condition guarding
the target (while 150 does not call £ at all). Upon closer in-
spection however, it is clear that the target guard condition
x == 999 is always false on this path because function £ is
called with argument 0 on line 2, and therefore the target
cannot get executed through this call. This observation led
us to create a technique which automatically prunes CFG
edges which can be proven to make the target unreachable.

To find such edges we use an interprocedural data-flow
analysis which computes for each target and basic block in
the program a necessary condition to reach that target, a
form of weakest preconditions [13]. If by traversing an edge
we obtain a false condition, we conclude that the target
is unreachable through that edge. Considering the same
example, the branch on line 9, which guards the target, cre-
ates the condition x = 999, while the edge from the function
call at line 2 defines x to be 0. By substitution, we obtain
the formula 0 = 999 which evaluates to false, and conclude
that the function call on line 2 cannot help in reaching the
target. Column WP of Figure 3 shows the minimum distance
from each instruction to the target after removing the edge
introduced by this function call. Lines 1 and 2 have their
distances updated.

For the interested reader, we present the data-flow equa-
tions which compute the preconditions, relative to a target,
at the beginning and at the end of each basic block, and give
an intuition on their correctness.

(1)  outy, = VsESuCCb (condp—s Ning)
(2)  iny, = wp(b, outy)



With initial values:
Miarget = true, outiarger = false
iny, = outy = false, Vb # target

condy— s represents the condition required to go from basic
block b to s. For unconditional branches the condition is
always true. wp(b,outy) is the standard weakest precon-
dition function, applied to basic block b and postcondition
outy, which is easily computed for a single basic block as we
describe below.

The equations guarantee that any edge b — s for which
condp— s N ins is false and any basic block b for which in
is false cannot lead to the target.

The first equation intuitively says that at the end of a
basic block b, the condition to reach the target is the dis-
junction of the conditions for all possible paths from that
basic block to the target. The second equation obtains the
weakest precondition for a basic block from its corresponding
postcondition. This is done by iterating through the instruc-
tions of the basic block in reverse order and substituting
all variables from the postcondition with their definition,
as appropriate. A variable not defined in the current basic
block is left unchanged. When applied to the target basic
block, the wp function always yields true.

Solving the system is done using a standard fixed-point
computation approach. Our implementation makes two con-
servative approximations to make the analysis tractable even
on large programs. First, the wp function only handles as-
signments. If the basic block applies other operations to the
postcondition variables, the returned value is true. Second,
a disjunction of syntactically non-identical formulae in the
first equation is also treated as true, to prevent formulae
from growing exponentially.

These two approximations capture two common practical
cases. First, formulae which become false when applying
the wp function usually correspond to code patterns which
use boolean flags or enumerated type variables in branch
conditions; basic blocks which, for example, set a flag to
false and make a certain branch infeasible are recognised
accordingly. The example in Figure 3 is such a case.

Second, formulae may become false because the set of
conjuncts accumulated through the first data-flow equation
becomes inconsistent. This case correspond to patterns where
the same variables are used in branch conditions multiple
times, possibly in different parts of the program and some of
the conditions are mutually incompatible. A simple example
can be observed in Figure 3: the weakest preconditions
algorithm can prove that the branch between lines 1 — 2
does not to lead to the target because the branch condition
input < 100 is incompatible with the condition input > 100
which appears subsequently on the only path to the target.

After obtaining the distance from each basic block to the
target through the control-flow analysis, and the branches
and basic blocks that cannot lead to the target through
the weakest preconditions analysis, the distance from each
available seed input to the target is computed as follows:

1. Compute the subgraph G of the program’s CFG in-
duced by running the program on the seed input. G’s
nodes are the basic blocks executed and its edges are
the branches taken during execution;

2. Remove all nodes and edges in G which were proven
to make the target unreachable;

3. Iteratively remove from G all nodes orphaned by the
previous step, i.e. while there are nodes with in-degree
0 (except the program entry point), remove them and
all their outgoing edges;

4. Choose the minimum from the distances of the remain-
ing nodes to the target.

3.3 Greedy Exploration with Informed Path
Regeneration

The last and most challenging stage of KATCH is responsi-
ble for transforming the previously selected seed input into a
new input that executes the target. Our approach is based
on symbolic execution [24], a program analysis technique
that can systematically explore paths through a program.
The key idea behind symbolic execution is to run the pro-
gram on symbolic input, which is initially allowed to have
any value. Then, whenever a branch depending directly or
indirectly on the symbolic input is encountered, execution is
conceptually forked to follow both sides if both are feasible,
adding appropriate constraints on each side of the branch.
Finally, whenever a path terminates or hits an error, the
constraints gathered on that path are solved to produce
a concrete input that exercises the path. For example, if
we run the code in Figure 3 treating the input variable as
symbolic, then at branch 1 execution will be split into two
paths: one following the then side of the branch, on which we
add the constraint that input < 100, and one following the
implicit else side of the branch, on which we add the con-
straint that input > 100. When the path with the constraint
input < 100 reaches line 4, only the else side is feasible, so
no other path is spawned at this point. On the other hand,
when the path with the constraint input > 100 reaches line 4
both sides are feasible, so execution is again split into two
paths, one on which we add the constraint that input > 100,
and one on which we add the constraint that input < 100
(which together with the existing constraint that input >
100 gets simplified to input = 100). The branches at lines 5
and 9 similarly spawn new execution paths. Finally, when
a path terminates, a constraint solver is used to generate a
solution to all the constraints gathered on that path, which
represents an input that can be used to exercise the path.
For example, the path with the constraints input > 100,
input > 100 and input < 200 may return the solution input
= 150 which exercises that path.

In our approach, we start symbolic execution from an
existing input, the seed, similarly to the approach taken in
concolic execution [18,35] and our ZESTI system [29]. The
seed is then iteratively modified by exploring paths which
get closer to the target; symbolic execution provides the
framework for the exploration and constraint solving is used
to map program paths back to inputs. The novelty of our
approach lies in the way paths are selected for exploration.

The selection is based on a metric which estimates the
distance from a path to the target, similar to the distance
used by the input selection stage (§3.2). In each iteration, we
execute the program using the latest input, and remember
all branch points, e.g. if conditions, along with information
necessary to continue execution on the other side of the
branch, should we later decide to.

We then select the branch point whose unexplored side
S is closest to the target (according to the estimated dis-
tance) and attempt to explore this side. If S is feasible,



void log(char input) {
int file = open("access.log", O_-WRONLY|O_APPEND);

if (input >= ’\,’> && input <= >"’) {
write(file, &input, 1);
} else {
char escinput = escape(input);
write(file, &escinput, 1);

}
close(file);

}

—_
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Figure 4: Example based on lighttpd patch 2660 used
to illustrate the greedy exploration step. Lines 3,
5—8 represent the patch.

i.e. the conjunction of the branch condition towards S and
the current path condition is satisfiable, we eagerly explore
it, in what we call a greedy exploration step. Otherwise,
we examine two possibilities: (1) the branch condition is
symbolic, i.e. it has a data dependence on program input on
the current path and (2) the branch condition is concrete, i.e.
it has a control dependence on program input. Informally,
a branch condition is data dependent on program input
if data propagates from the input to at least one of the
variables involved in the branch condition via a sequence of
assignments. A condition is control dependent on the input
if at least one variable involved in the condition has more
than one reaching definition. Note that some conditions can
be both data and control dependent.

For data dependent conditions (including those which are
also control dependent), we apply informed path regenera-
tion, where we travel back to the branch point that made S
infeasible and take there the other side of the branch. For
control dependent conditions, we attempt to find a different
definition for the variables involved in the condition, such
that the condition becomes true. In the following, we exam-
ine each of these cases in detail.

To illustrate our approach, we use the code snippet in
Figure 4, which is based on a patch introduced in revi-
sion 2660 of the lighttpd web server, which we analysed in
prior work [28]. The log function takes a single character
as input and writes it into a text file. The function was
initially writing all characters unmodified, but was patched
in order to escape sensitive characters that could corrupt
the file structure. However, the program was tested only
with printable character inputs and thus the else branch
was never executed. After seeding the analysis with such
an input containing only printable characters, our technique
determines that the else side of the symbolic branch point
at line 3 is the unexplored branch side closest to the patch
(in fact, it is part of the patch), and goes on to explore it
(in a greedy exploration step) by negating the condition on
line 3.

To understand when informed path regeneration is nec-
essary, consider the example in Figure 5, in which the log
function of Figure 4 is called for each character of the re-
questVerb string. Assuming that the seed request contains
the GET verb, the comparison at line 1 constrains this input to
the value GET for the remainder of the execution. Changing
any of the characters in the requestVerb is impossible after

1 if (0 == strcmp(requestVerb, "GET")) { ... }

2 for (charx p = requestVerb; *p; p++) {
3 log(xp);

Figure 5: Example based on lighttpd patch 2660 used
to illustrate the informed path regeneration step.
As in Figure 4, the patch is on lines 3, 5—8 of the log
function.

this point because it would create an inconsistent execution,
and thus on this path we cannot follow the else side of the
branch in the log function.

Instead, our informed path regeneration step travels back
just before the execution of the symbolic branch point that
introduced the constraint that makes the patch unreach-
able, and then explores the other side of that branch point.
In our example, that symbolic branch point is the one at
which requestVerb[2] was constrained to be ‘T’, and thus
our technique takes here the other side of the branch, in
which requestVerb[2] is constrained to be different from T°.
With this updated path condition, execution reaches again
line 3 of the log function, where execution is allowed to take
the else path and thus cover the patch.

3.4 Definition Switching

Informed path regeneration does not work if the branch
condition has a concrete value, essentially because we cannot
reason symbolically about concrete expressions. This case
occurs when the condition does not have a data dependence
on the input on the currently explored path, but only a con-
trol dependence. Figure 6, containing code from diffutils
revision 8739d45f, showcases such a scenario. The revision
modifies line 235, which is our target.

To execute the patch, one needs to pass through the switch
statement on line 230, requiring ig_white_space, and in turn
ignore_white_space to be equal to the IGNORE_ALL_SPACE con-
stant. This only happens when the program is given the -w
command line argument (line 495). Assuming the current
input does not include -w, the lack of a data dependence
between the switch condition and the command line ar-
guments renders informed path regeneration unusable. To
solve this problem, we use a lightweight approach that finds
the reaching definitions for the variables involved in the
condition using static analysis and then attempts to find a
path to an uncovered definition using the two techniques
previously presented. To further improve the chances of
getting the right definition early, the algorithm gives priority
to definitions that can be statically shown to satisfy the
target branch condition. Furthermore, the algorithm works
recursively on all definitions which were already executed,
but for which the right-hand side is not a constant. That
is, the algorithm can be nested multiple times by using a
stack of intermediary targets; when a definition needs to be
switched, the active target is saved on the stack and the
selected definition becomes the new active target. As soon
as the definition is executed, the previous target is popped
off the stack.

To show how definition switching works in practice, con-
sider the same code snippet and the input -a -y - a b pro-
vided by input selection, which compares two files a and b
treating them as text (-a), and outputs the results side-by-



src/io.c
217 enum DIFF_wh_sp ig white_space = ignore_white_space;

230 switch (ig_white_space)

231 {
232 case IGNORE_ALL_SPACE:
233 while ((¢c = xp++) != ’\n?)
234 if (! isspace (c))
235 h = HASH (h, ig_case ? tolower (c) : c);
236 break;
src/diff.c

291 while ((c = getopt_long (argc, argv,

shortopts, longopts, NULL)) != —1)
292 {
293 switch (c)
204 {
319 case ’b’:
320 if (ignore_white_space < IGNORE_SPACE_CHANGE)
321 ignore_white_space = IGNORE_SPACE_CHANGE;
322 break;
323
324 case ’Z’:
325 if (ignore_white_space < IGNORE_SPACE_CHANGE)
326 ignore_white_space |= IGNORE_TRAILING_SPACE;
389 case ’E’:
390 if (ignore_white_space < IGNORE_SPACE_CHANGE)
391 ignore_white_space |= IGNORE_TAB_EXPANSION;
392 break;
494 case 'w’:
495 ignore_white_space = IGNORE_ALL_SPACE;
496 break;

Figure 6: Example from diffutils revision 8739d45f
showcasing the need for definition switching. The
patch is on line 235 and is guarded by a condition
that is control dependent on the input.

side (-y). This input reaches the guarding switch statement
on line 230 but evaluates to a different case. To reach the
target, we need to modify the input such that the condi-
tion ig_white_space == IGNORE_ALL_SPACE is satisfied. Be-
cause the condition does not have a data dependence on
the input, KATCH attempts to find another definition for the
ig_white_space local variable and discovers one on line 217.
However, it detects that this definition was already executed,
so it recursively attempts to find definitions for the right-
hand side of the assignment, the ignore_white_space global
variable.

At this point, KATCH finds four definitions, each corre-
sponding to a different command line argument and de-
cides to use ignore_white_space = IGNORE_ALL_SPACE because
it matches exactly the original condition which it attempts
to satisfy. KATCH now pushes the original target (line 235) to
the stack and changes the active target to line 495. It then

REPO="git://git.savannah.gnu.org/diffutils.git"
DIFFTARGETS="src 1lib"

PROGRAMS="src/diff src/diff3 src/sdiff src/cmp"
LIBS="-1rt"

Figure 7: Configuration file used to test diffutils.
The file specifies the repository address, the folders
which may contain relevant changes, the programs
to test and the libraries required to build the system.

uses an informed path regeneration step to replace the first
command line argument with the required -w option. This
reaches the intermediary target which causes the original
target to be popped off the target stack and transformed
back into the active target. Execution continues and this
time the ignore_white_space and ig_white_space variables
have the appropriate values to reach the patch. The syn-
thesised input which reaches the patch is -w -y - a b.

4. IMPLEMENTATION

KATCH consists of patch preprocessing scripts, the input
selection subsystem, the augmented symbolic execution tool
and a set of scripts which automatically iterate through all
patches in a given set of program revisions. Most compo-
nents operate at the level of LLVM bitcode, the intermediate
language used by the popular LLVM compiler [26].

At a high level, a tester is only required to create a con-
figuration file with details about the system to test, such
as the repository address and the names of targeted exe-
cutable files. Figure 7 shows the actual file used for testing
diffutils. Optionally, the tester can also provide scripts
for compiling the system and running its regression suite.
Otherwise, the default configure, make and make check com-
mands are used, adapted for creating LLVM bitcode along
with the native executables. Having this setup, the tester
only needs to issue a command such as:

./test-patch-multiple diffutils revl rev2
to test all diffutils revisions between rev! and rev2. This
script could be easily added to a continuous integration
system to automatically test the last patch.

4.1 Patch Preprocessing

Patch preprocessing is implemented via two LLVM passes:
the first one statically prunes non-executable lines by travers-
ing the compiled program and using debug information to
map LLVM instructions back to source code; a line is deemed
non-executable if no instruction maps back to it. The second
pass instruments the program to obtain test suite coverage
information and determine which patch lines are executed
by the test suite.

4.2 Input Selection

Input selection uses a combination of scripts and LLVM
passes to instrument the program and analyse the execution
of its test suite. In this phase, the original executables
specified in the configuration file are replaced with wrapper
scripts that invoke an instrumented copy of the correspond-
ing binary. For each target, the instrumentation computes
and outputs to a file the minimum distance from each test
suite input, allowing the wrapper to determine which input



gets closest to the target. This input is identified transpar-
ently by its sequence number, i.e. the number of times the
program was executed by the test suite so far. Subsequently,
we run the test suite again and when reaching the target
sequence number, we invoke KATCH instead of the regular
executable.

The only assumption made by our approach is that the
order of running the tests is deterministic, which holds in
all cases we have looked at. While we could have used
other solutions, we found that they are either not as general
or they do not perform as well. For example, a different
solution would be to record the program arguments used
to get to the minimum distance instead of the sequence
number and then run KATCH directly using these arguments.
However, this approach fails when the test suite harness
creates any non-trivial setup, not captured by the command
line arguments, such as files, pipes or environment variables.
Another approach is to directly run KATCH on all test inputs.
The downside is the larger overhead: symbolically interpret-
ing the program is several orders of magnitude slower than
native execution, while the instrumented programs have a
comparable execution time to their native counterparts.

Instrumenting the program is performed through an LLVM
pass which takes as input the original program and the
current target. The pass uses a standard shortest path
algorithm to statically compute the distance from each basic
block to the target in the program’s interprocedural control
flow graph and adds code to each basic block to record this
distance at runtime. It further uses the weakest precondition
data-flow analysis described in §3.2 to refine this distance
and inserts code in the executable to eliminate from the
computation those branches which provably cannot lead to
the target. To increase maintainability, most of the instru-
mentation is written in C++ as a set of helper functions which
are then statically linked with the target program.

4.3 Symbolic Exploration

KATCH is implemented on top of the KLEE [6] open-source
symbolic execution engine. KATCH starts by executing the
program on the path induced by the selected seed input to
completion or until a predefined timeout expires. On this
path it records all possible branches, feasible and infeasible,
that the program does not take. This provides more infor-
mation for selecting the next path, as opposed to previous
approaches which only considered the feasible branches. The
branches are then considered in order of increasing distance
to the target as candidates for one of the techniques em-
ployed by KATCH: greedy exploration for feasible branches,
and informed path regeneration or definition switching for
infeasible branches. Once a suitable branch is found, the
process repeats, executing a batch of instructions and re-
evaluating the available paths.

We decided to use a batch of instructions, instead of a
single one because this offers the advantage of generating
more paths to choose from at the next iteration, with only
a small time penalty, effectively providing a form of look-
ahead. In certain scenarios, this compensates for the un-
derestimation of the distance between two instructions, by
permitting the execution of longer paths than dictated by
the static estimation. Our implementation currently uses
batches of 10,000 LLVM instructions.

KATCH uses another optimisation to handle efficiently sev-
eral common functions whose use is expensive in a sym-

bolic execution context: the getopt family of functions, and
stremp. For space reasons, we discuss only getopt below.
The getopt functions are helpers used by many programs to
process command line arguments. They work by allowing
the programmer to write a simple specification of the argu-
ments accepted by the program, thus moving the bulk of
the command line parsing code inside the library functions.
KATCH is aware of the getopt semantics and uses this infor-
mation to speed up processing. More precisely, whenever
the return value of getopt is a reaching definition, instead
of recursively descending in the function code, it inspects
the function argument corresponding to the specification of
accepted command line arguments and directly determines
the command line option needed to obtain the desired def-
inition. The new argument is added to the command line
and program execution restarts from the beginning.

4.4 Limitations

We discuss below the most significant limitations of our
current prototype. Most importantly, we currently do not
handle targets which are accessible only through function
pointer calls that have not been exercised by the regression
suite. Such indirect calls pose problems both during the
static analysis when computing the closest input, and during
dynamic exploration. The problems could be mitigated by
including support for pointer analysis [1, Chapter 12] which
KATCH currently does not offer.

Second, our current implementation of definition switch-
ing does not support aggregate data types such as structures
and arrays. Finally, KLEE’s environment model is incom-
plete, e.g. it does not handle certain system calls.

S. EXPERIMENTAL EVALUATION

For an objective evaluation of our technique, we have set
ourselves the following two requirements. First, we have
decided to do no cherry picking: once we have chosen a set
of benchmark programs, rather than selecting the 10 (or
20, or 30) patches on which our technique works well, we
included all the patches written over an extended period of
time. Second, we have decided to allow a short timeout for
our system, of no more than 15 minutes, which we believe
is representative for the amount of time developers typically
dedicate to testing a patch.

We evaluated KATCH on nineteen programs from the GNU
diffutils, GNU binutils and GNU findutils systems. These
are all mature and widely used programs, installed on vir-
tually all UNIX-based distributions.

GNU findutils is a collection of three programs, find,
xargs and locate. They are smaller in size than the other two
benchmarks, having a combined 14,939 lines of code (LOC)?
in the tools themselves, and include additional portions of
code from gnulib, which totals more than 280,000 LOC at
the latest revision that we inspected. We examined the 125
patches written in the two years and two months period
between November 2010 and January 2013.

GNU diffutils comprises four programs, diff, sdiff,
diff3 and cmp. They are of medium size, with 42,930 LOC
in the tools themselves, and include additional portions of
code from gnulib, similarly to findutils. We have analysed
all the 175 patches written during the 2.5 years between
November 2009 and May 2012.

2We report the number of LOC in the latest version tested, measured
using cloc (http://cloc.sourceforge.net).
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Table 1: Number of targets covered by the manual
test suite, and the manual test suite plus KATCH.
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Figure 8: Distribution of minimum distances for the
939 targets not covered by the regression suites. The
figure does not include 389 binutils targets accessible
only through indirect function calls not exercised
by the test suite, which are outside the current
capabilities of KATCH. Each bar also shows the
fraction of target covered by KATCH.

GNU binutils includes a variety of programs out of which
we selected the twelve assorted binary utilities from the
binutils folder (addr2line, ar, cxxfilt, elfedit, nm, objcopy,
objdump, ranlib, readelf, size, strings and strip). They
contain 68,830 LOC, and use the statically linked libraries
libbfd, libopcodes and libiberty, which total over 800,000
LOC. Because of the more accelerated development pace in
binutils, we examined a shorter 1 year 4 months period
between April 2011 and August 2012, in which 181 patches
were added to the binutils directory.

We set a short timeout of ten minutes per target for
findutils and diffutils and a timeout of fifteen minutes
for the larger binutils programs. We used a four-core Intel
Xeon E3-1280 machine with 16 GB of RAM, running a 64-bit
Fedora 16 system. As an extra safety check, we verified that
all inputs generated by KATCH execute the corresponding
patch code on the natively compiled programs, using gcov
for coverage measurement.

Our tool and results have been successfully evaluated by
the ESEC/FSE artifact evaluation committee and found to
meet expectations.

5.1 Coverage Improvement

As a first measure of KATCH’s effectiveness, we looked at
its ability to improve patch coverage. Because KATCH oper-
ates at the basic block level, we define patch coverage as the
number of executed basic blocks which contain statements
added or modified by a patch over the total number of basic
blocks which contain such statements.

The patches analysed contain altogether 9,873 textual
lines of code.® After processing these lines to remove
non-executable statements and group related executable
lines, we obtained 1,362 potential targets which are part
of 122 patches. Upon manual inspection, we found that
the rest of the patches only keep the build system up-to-
date with the program dependencies, or make changes to

3This includes only lines in .c and .h files.

Program | Targets Covered

Suite Test Test + KATCH
findutils 344 | 215 (63%) 300 (87%)
diffutils 166 58 (35%) 121 (73%)
binutils 852 | 150 (18%) 285 (33%)
Total 1,362 | 423 (31%) 706 (52%)

the documentation or test suite. A total of 423 targets
were already covered by the system’s test suite, leaving 939
targets for KATCH to analyse.

The first step performed by KATCH is to compute the
minimum distance from the regression test inputs to each
target. Figure 8 presents the distribution of the minimum
distances, which also provides a rough estimate of the work
that KATCH needs to do for each target. More than half of
the targets have regression tests which get relatively close
to the target, at a distance smaller than five. Just a small
fraction of the targets are at a distance over 20, which are
all contained in completely untested binutils features. The
figure does not include 389 binutils targets accessible only
through indirect function calls not exercised by the test
suite, which are outside the current capabilities of KATCH.

Table 1 summarises the results obtained after applying
KATCH to these 939 targets. The Targets column lists the
total number of targets for each benchmark and the Covered
column lists the number of targets covered by the regression
test suite, respectively the regression test suite and KATCH.
It can be seen that KATCH has automatically increased the
overall patch coverage from 31% to 52% (covering 283 out
of the 939 targets).

We analyse below the cases in which KATCH fails to reach
the target, in order to illustrate its limitations. More than
half of the cases are targets accessible only through indirect
function calls never exercised by the test suite, which our
current prototype does not handle (see §4.4).

Another large number of cases relate to complex or mul-
tiple guard conditions. To satisfy them, KATCH would need
to alter the input structure or to have access to a richer
test suite, containing different seed inputs. For example,
many binutils targets are only executed when the input
file contains specific sections, with an individually defined
structure. When none of the test suite files contains such
a section type, the targets are usually not covered because
KATCH cannot synthesise a complete section from scratch in
the allotted time.

A more subtle scenario involves data stored using variable-
length encoding, which is often used by binutils. In this
case, KATCH can easily change input values only as long as
they would be encoded using the same length. Changing
to a value with a different encoding length would require
inserting or removing one or more bytes in the middle of
the input, significantly increasing complexity by possibly
affecting other parts of the input such as header offsets.

Therefore, KATCH works best when the seed input does
not need to have its structure altered. This is an inherent
limitation of symbolic execution, which does not treat the
input structure (e.g. its size) symbolically. This limitation is
mitigated as the test suite quality improves and the chances
of finding a good seed input increase.



Table 2: Number of targets covered by different
combinations of heuristics: greedy (G), greedy and
informed path regeneration (G4+IPR), greedy and
definition switching (G+DS) and all (KATCH).

Program | G G +IPR | G + DS | KATCH
Suite

findutils 74 85 78 85
diffutils 25 29 49 63
binutils 70 121 76 135
Total 169 235 203 283

The fact that our definition switching analysis does not
support aggregate data types (§4.4) also affects several tar-
gets. A smaller number of targets cannot be reached due
to the incomplete environment model implemented in KLEE,
such as unsupported system calls.

Finally, we also noticed that several targets were not cov-
ered because they correspond to unreachable code on our
test system—e.g. are reachable only on operating systems
which differentiate between text and binary files.

In addition to the overall coverage improvement, we also
wanted to measure exactly the contribution of each heuristic
used by KATCH. We therefore re-executed the same ex-
periments, selectively disabling all possible combinations of
heuristics (note that all heuristics depend on greedy). Ta-
ble 2 shows the results. It can be seen that the improvement
brought by each heuristic varies from system to system. At
one end of the spectrum diffutils covers 152% more targets
when using all heuristics compared to greedy alone, while
at the other end findutils sees only a 15% improvement.
Overall, informed path regeneration and definition switching
combined brought a 67% improvement.

We have also run our experiments using KLEE instead of
KATCH, to see how well a pure dynamic symbolic execution
approach performs. We ran KLEE for 30 minutes on each
revision, and we used an appropriate set of symbolic argu-
ments. The results were very poor, with only two targets
covered in the smaller findutils programs.

5.2 Bugs Found

KATCH was also able to identify a total of fifteen distinct
crash bugs. We could verify that thirteen of these are also
present in the latest version and we reported them to the
developers, providing automatically-generated inputs which
trigger them. Eleven of the bugs were discovered as a direct
consequence of KATCH’s goal to reach the target: six bugs
are in the actual targets and are discovered as they are
introduced, while the other five are discovered because code
is introduced in their vicinity.

One bug was found in findutils, and the rest were found
in binutils, the largest and most complex of all three appli-
cation suites. A manual analysis of the bugs revealed that
they relate to the handling of unexpected inputs. Inter-
estingly, binutils generally does a good job handling such
situations, but in several cases, the checks performed are
incomplete. An example is bug 15206* in objdump, a buffer
overflow caused by improperly checked buffer bounds. The
bug appears in revision 119e7b90, shown in part in Figure 9.

“http://sourceware.org/bugzilla/show_bug.cgi?id=15206

binutils/dwarf.c
243  process_ext_line_op (unsigned char *data, int is_stmt)

251 len = read_leb128 (data, & bytes_read, 0);
252 data += bytes_read;

380 unsigned int rlen = len — bytes_read — 1;
391 for (; rlen; rlen——)
392 printf (" %02x", xdata++);

Figure 9: Example showing a bug found by KATCH,
introduced in binutils revision 119e7b90. The bug is
triggered on line 392. The highlighted lines are part
of the patch.

binutils/readelf.c
12232 while (external < (Elf External Note %) ((char )
pnotes + length))
12233 {
12238 if (lis_ia64_vms ())
12239 {
12240 inote.type = BYTE_GET (external—>type);
12241 inote.namesz = BYTE_GET (external—>namesz);
Figure 10: Example showing a bug found by

KATCH, introduced in binutils revision b895e9d. The
bug is triggered on line 12240. The highlighted line
is part of the patch.

Line 251 reads the buffer size from the buffer itself and
lines 391 and 392 rely on this size to iterate through the
entire buffer. The overflow occurs if the size read does not
match the allocated buffer size.

Another example is the readelf bug 15191,% shown in
Figure 10. This bug was detected in revision b895e9d, when
code was added to conditionally execute several existing
lines. None of the code shown was executed by the regression
tests. Line 12238 was newly added, therefore KATCH used
it as a target and eventually executed it. It then attempted
to run the program until the end and reached the next
line (12240) where it discovered an overflow when reading
through the external pointer. We have not debugged the
exact root cause of the bug ourselves, but we sent an input
triggering the crash to the developers, who fixed it shortly.

6. RELATED WORK

Synthesising inputs which cover a target is an essential
problem in test generation and debugging and has been
addressed through a variety of techniques, including sym-
bolic execution, dependence analysis, iterative relaxation
and search-based software testing, among others [2, 15,21,
36,40,41, 44).

Shttp://sourceware.org/bugzilla/show_bug.cgi?id=15191



While we borrow ideas from the state of the art in these
areas, our approach differs by treating the task as an optimi-
sation problem, where we try to explore paths that minimise
the estimated distance to the target using symbolic exe-
cution seeded with existing test inputs and enhanced with
various heuristics based on program analysis.

We introduced our approach in a workshop paper [28],
which phrased the problem in terms of distance minimisa-
tion combined with input selection. However, the technique
described there was limited to the basic algorithm in §3.3,
and did not include any of the advanced program analyses
(in particular weakest preconditions for input selection and
switching definitions for control dependent branches) which
are necessary to make it practical to a wide variety of patch
types. Furthermore, the workshop paper only evaluated
the approach on three hand-chosen patches, while here we
include an extensive evaluation on all the patches written
for nineteen programs over a combined period of six years.

Our technique fits within the paradigms of longitudinal
and differential program analysis [30,39], in which the test-
ing effort is directed toward the parts of a program that have
changed from one version to the next, i.e. software patches.
In particular, differential symbolic execution [32] introduces
a general framework for using symbolic execution to com-
pute the behavioural characterisation of a program change,
and discusses several applications, including regression test
generation.

The work most closely related to KATCH is that on directed
symbolic execution. Xu and Rothermel introduced directed
test suite augmentation [41], in which existing test suites
are combined with dynamic symbolic execution to exercise
uncovered branches in a patch. The technique is similar to
the greedy step in KATCH, without any of our additional
analyses.

Researchers have proposed several improvements to this
technique: eXpress [36] prunes CFG branches which prov-
ably do not lead to the patch; directed symbolic execu-
tion [27] introduces call-chain-backward symbolic execution
as a guiding technique for symbolic execution; statically-
directed test generation [2] uses the size of the target’s back-
ward slice reachable from the current state as an estimate
for the likelihood of reaching it. Directed incremental sym-
bolic execution [33] is a related technique which improves
the efficiency of symbolic execution when having to analyse
only the differences between two program versions. It can
dynamically prune program paths which exercise the same
behaviours in two program versions, and could be combined
with KATCH if multiple behaviourally different inputs which
cover the patch are desired.

While it is difficult to accurately compare these techniques
with KATCH or among each other, we believe that KATCH
improves upon previous work in several ways. First, by
using the definition switching heuristic, KATCH takes into
account more than the currently explored set of paths—and
reasoning about unexecuted statements is critical for reach-
ing certain targets. Second, informed path regeneration
uses a “surgical” approach to reaching previously infeasible
states by making changes to exactly those variables involved
in infeasible branch conditions. Third, our evaluation is
performed on significantly more patches than in prior work,
which gives a better insight into the strengths and limita-
tions of such a technique. Finally, we believe KATCH could
be combined with some of these prior approaches, e.g. it

could dynamically prune paths that are shown not to lead
to the target.

KATCH also shares characteristics with search-based soft-
ware testing (SBST) [16,40,43]. First, our notion of esti-
mated distance is similar to that of fitness in SBST. Second,
the idea of reusing existing test cases has also been success-
fully employed in SBST [16,43]. Future work could try to
combine these techniques for the purpose of patch testing.

Research on automatic generation of filters based on vul-
nerability signatures [4,10] addresses the problem of execut-
ing a specific target from a different angle. Given an existing
input which exploits a program vulnerability, the goal is to
infer the entire class of inputs that lead to that vulnerabil-
ity. Similarly, generating inputs with the same effect as a
crashing input but which do not leak sensitive data, is used
in bug reporting to preserve user privacy [9]. In the context
of automated debugging, execution synthesis [44] and Bu-
gRedux [23] attempt to solve a similar problem: generating
an input or a path starting from a set of ‘waypoints’ through
which execution has to pass.

Research on test suite augmentation requirements has used
the differences between two program versions to derive re-
quirements that test suites have to meet in order to ensure
proper patch testing [22,34]. While we currently only use
simple coverage metrics to guide our analysis, it is possible
to combine our approach with such requirements.

7. DISCUSSION AND CONCLUSION

We have presented KATCH, an automated technique for
testing software patches. Our approach relies on symbolic
execution, augmented by several synergistic heuristics based
on static and dynamic program analysis. We have applied
KATCH to all the patches written for nineteen programs over
a combined period of approximately six years, and have
shown that our technique can find bugs and significantly
increase patch coverage with only a few minutes per target.

We have learned several lessons from this research. First,
it has reminded us that achieving high patch coverage is
hard, and that as a result most patches remain untested—
e.g. for our benchmarks the manual patch coverage was a
modest 31% overall.

Second, it has reinforced our belief that automatic tech-
niques are able to increase patch coverage and find bugs in
the process. On average, KATCH was able to increase patch
coverage from 31% to 52%, while on the best performing
benchmark (diffutils), it more than doubled it, from 35%
to 73%. In addition, we found fifteen crash bugs in widely-
used mature programs.

Finally, it has shown us that the state of the art needs
more advances to reach the goal of fully automated testing
of real patches: despite the increase in coverage and the bugs
found, KATCH was still unable to cover most of the targets
in the binutils programs. We hope our current results will
act as a challenge to other researchers working in this area.
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