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ABSTRACT
Application crashes and errors that occur while loading a docu-
ment are one of the most visible defects of consumer software.
While documents become corrupted in various ways—from storage
media failures to incompatibility across applications to malicious
modifications—the underlying reason they fail to load in a certain
application is that their contents cause the application logic to ex-
ercise an uncommon execution path which the software was not
designed to handle, or which was not properly tested.

We present DOCOVERY, a novel document recovery technique
based on symbolic execution that makes it possible to fix broken
documents without any prior knowledge of the file format. Starting
from the code path executed when opening a broken document, DO-
COVERY explores alternative paths that avoid the error, and makes
small changes to the document in order to force the application to
follow one of these alternative paths.

We implemented our approach in a prototype tool based on the
symbolic execution engine KLEE. We present a preliminary case
study, which shows that DOCOVERY can successfully recover broken
documents processed by several popular applications such as the
e-mail client pine, the pagination tool pr and the binary file utilities
dwarfdump and readelf.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering;
E.5 [Files]: Backup/recovery

General Terms
Reliability
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1. INTRODUCTION
The inability to load text documents, e-mails, photos or music files

in a desired application is one of the most user-visible defects of con-
sumer software. This type of error can have diverse causes: files can
be inadvertently corrupted by storage media failures, faulty network
transfers or power outages; documents created by one application
cannot be opened in another purportedly compatible application;
code may have bugs that are triggered by specific file contents; or
documents can be intentionally altered by attackers to exploit secu-
rity vulnerabilities. One example from the last category is a known
vulnerability in the pine e-mail client in which an e-mail with a ma-
liciously crafted From field causes older versions of pine to abort
execution while loading it, preventing users from accessing e-mails.

Regardless of how the problematic document was generated, the
underlying reason it crashes or fails to load in a certain application is
that its contents cause the application logic to exercise an uncommon
execution path which the software was not designed to handle, or
which was not properly tested.

Sometimes, the file can be repaired by fixing its broken structure;
however, this requires a special recovery component that contains
a parser for the given file format. While some popular document
readers come with such customised recovery components, this is the
exception rather than the rule.

In this paper, we introduce DOCOVERY, a novel document re-
covery technique which does not require any prior knowledge of
the underlying file format. DOCOVERY takes as input a broken
document and an application, and uses symbolic execution to fix
the document to achieve two key goals: (1) the recovered document
does not cause a failure; and (2) it is similar to the broken document.
While creating a document that does not make the program crash is a
prerequisite for a successful recovery, DOCOVERY goes beyond this.
It attempts to create a document that avoids the crash while retaining
as much of the content of the original document as possible.

We have implemented our approach in a prototype tool, which we
have successfully used to recover documents processed by several
medium-sized applications such as pine, pr, and readelf.

The rest of this paper is organised as follows. In §2 we define
the document recovery problem and give a high-level overview of
our technique. We present the various stages and challenges of the
technique in §3, discuss implementation details in §4 and evaluate
our prototype in §5. We discuss the main limitations of our approach
in §6, present related work in §7 and conclude in §8.

2. OVERVIEW
Before describing our document recovery technique in detail, we

further define the problem and introduce some terminology. For
the purpose of this paper, the term document is used to refer to an



1 // file contents: "55"
2 FILE* f = fopen("f.txt", "r");
3 char x = fgetc(f);
4 char y = fgetc(f);
5 if (x >= ’5’) {
6 if (y >= ’5’) {
7 // CRASH!
8 } else {
9 // OK!

10 }
11 } else {
12 // OK!
13 }

Figure 1: A toy application.

input file processed by a certain program. Documents can be text or
binary files.

We consider a document to be broken if it cannot be loaded suc-
cessfully by an application. Note that our definition is relative to
a given application—that is, a document might be broken in one
application, but not necessarily in another. For example, a file may
crash an older version of some document processing library but be
handled correctly by newer versions of the same library or by other
parsers of the given document format. In this paper, we often refer
to the broken document as the original document.

We consider that a document is successfully loaded if the appli-
cation (1) does not crash and (2) does not terminate with an error
message or an error exit code. If available, more sophisticated or-
acles can be used, and in many cases these can be easily added by
users or developers.

The aim of the document recovery process is to change the doc-
ument so that it is successfully loaded by the application, while
retaining a high level of similarity between the original document
and the recovered document. The degree of similarity between two
documents ultimately depends on the specific file type. In the ab-
sence of a high-level document specification, we use a byte-level
similarity metric, which we discuss in §3.6.

In our approach, we attempt to recover a broken document without
any prior knowledge of the file format, i.e., without any document
specification. Instead, we use the application code itself to under-
stand how the program reads the document and what input bytes
cause the loading error. For instance, if the application crashes after
checking unsuccessfully that the sum of the first two bytes in the
document is 15, the first two bytes should be altered such that they
do sum to 15. DOCOVERY treats the document as an array D[N ] of
N bytes, which can be formalised as a sequence of length N over
an alphabet A = {0, 1, ..., 255}.

Our approach makes use of symbolic execution [6, 15], a popular
program analysis technique that can precisely analyse and explore
program execution paths. On each explored path, symbolic exe-
cution can gather exact mathematical constraints characterising all
inputs which take the program along that path. As an example,
consider the program in Figure 1. The program opens a text file,
reads the first two characters and stores them in variables x and y. If
both characters are greater than or equal to ’5’, the program crashes.
When symbolic execution follows this path, at each branch point
it gathers the constraints on the input that take the program along
this path: x ≥ ’5’ on line 5 and y ≥ ’5’ on line 6. As a result, the
crashing path is precisely characterised by the conjunction of the
constraints collected at each branch point: (x ≥ ’5’) ∧ (y ≥ ’5’).

Table 1: Paths explored in the toy application of Figure 1, with
corresponding constraints and possible recovery candidates.
The first row represents the original broken document.

Path (lines) Constraints File
...5, 6, 7 x ≥ ’5’ ∧ y ≥ ’5’ ‘55’
...5, 11, 12 x < ’5’ ‘05’
...5, 8, 9 x ≥ ’5’ ∧ y < ’5’ ‘50’

Figure 2: A high-level overview of DOCOVERY.

In symbolic execution, the program is executed on symbolic rather
than concrete input and variables are represented as expressions
over the symbolic input. On each executed path, symbolic execution
maintains a path condition (PC) formula that characterises all the
inputs that follow that path. New constraints are added to the PC
when the execution reaches a branch point for which both sides are
feasible under the current PC: at that point, execution is forked, fol-
lowing each side of the branch separately and adding the constraint
that the branch condition is true to the PC of the then side, and that
it is false to the PC of the else side.

In order to decide whether both sides of a branch are feasible,
a constraint solver [11] is used to solve the logical formula in the
current PC for satisfiability. A formula is satisfiable if there exists an
assignment of concrete values to variables that makes the formula
true. These concrete values satisfying the PC are called a satisfy-
ing assignment and are generated by the constraint solver. They
represent an actual input that will drive execution along the same
path on which that PC was collected. In our example, the formula
(x ≥ ’5’)∧ (y ≥ ’5’) is satisfiable, because there exists a satisfying
assignment, e.g., x = 5, y = 5.

In DOCOVERY, whose high-level overview is illustrated in Fig-
ure 2, we start by executing the program on the broken document,
gathering constraints on the side, as in the concolic variant of sym-
bolic execution [14, 26]. In other words, we treat program input as
symbolic and execute the program symbolically, but at each branch
point, instead of forking and exploring both sides of the branch, we
use the concrete input values to decide which side of the branch to
take. By using the broken document as a program input that guides
the execution, we reach the point of program crash and collect a
PC that corresponds to the execution path exercised by the broken
document. Assuming the contents of the original document are ‘55’,
then the collected PC will be (x ≥ ’5’) ∧ (y ≥ ’5’), as discussed
above. This condition encodes all inputs that follow that program
path and cause the application to crash. The relationship between
concrete input values and the constraints in the PC is noteworthy: the
concrete values determine the execution path, while the constraints
describe all the input values that are valid on this path.



Figure 3: Main stages of the document recovery process.

In order to avoid the crash, our approach explores alternative
execution paths around the one executed by the broken document
by systematically negating one of the constraints in the PC, say the
kth constraint, and dropping the remaining constraints, from the
(k + 1)st to the last one. This simulates an execution in which
the program follows the path executed with the original document
until it reaches the kth conditional statement, where it takes the
other side of the branch. In our example, there are two choices:
the first one is to negate the first constraint and drop the second,
obtaining the PC ¬(x ≥ ’5’), corresponding to the path following
the lines 2, 3, 4, 5, 11, 12; and the second one is to negate the second
constraint, obtaining the PC (x ≥ ’5’)∧¬(y ≥ ’5’), corresponding
to the path following the lines 2, 3, 4, 5, 6, 8, 9. On each path, our
technique takes the modified PC and solves it to generate a document
similar to the original one. For example, the first PC could be solved
to obtain document ‘05’, which differs only in the first character,
while the second PC could be solved to obtain document ‘50’, which
differs only in the second character. Both recovered documents
avoid the crash, and thus represent valid recovery candidates, which
can be presented to the user. Table 1 shows the PCs and possible
recovery candidates associated with each explored path.

While our high-level approach is conceptually simple, there are
several challenges that need to be addressed when it is scaled to real
applications, which we discuss in the next section.

3. DOCOVERY
Figure 3 shows the main stages of our document recovery tech-

nique DOCOVERY. The inputs to the recovery process are the broken
document and the source code of the application that fails to load
the document.1 The process consists of two main stages: broken
document execution and alternative paths exploration. The output
of DOCOVERY is a set of recovery candidates.

During the initial broken document execution stage, the appli-
cation is executed twice. In the first execution pass, DOCOVERY
identifies the bytes in the document that are potentially responsible
for the failure (§3.1). On the second execution pass, the bytes identi-
fied in the first pass are marked as symbolic and a limited number of
alternative paths, starting N branch points before the failure, are col-
lected along with the associated PCs (§3.2). Since real applications
and documents can provide a huge number of possible alternative
execution paths, it is important to limit and prioritise the paths that
will be processed.

In the second stage, the alternative execution paths collected
during the initial stage are explored in a search for a correct (i.e.,
not ending in a failure) program execution. The exploration process
is iterative and consists of three steps. First, a path to be explored is
selected (Path selection, §3.3). Second, a candidate document that
follows the selected path is generated (Candidate creation, §3.4).

1Conceptually, the technique can run directly on binaries, but in our prototype we
require source code. An example of a system implementing similar techniques for
binaries is presented in [9].

Table 2: Time needed to get the first recovery candidate when
the whole document is symbolic (‘Whole’) and when only the
potentially corrupt bytes are symbolic (‘Partial’).

Benchmark Whole Partial
pr timeout (3600s) 5.1s
pine timeout (3600s) 338.9s
dwarfdump timeout (3600s) 2.8s
readelf 14.8s < 1s

Third, the candidate document is loaded in the original application
in order to check whether it loads correctly (Candidate validation,
§3.5). The candidates that are successfully verified in the third step
are added to the pool of recovery candidates.

3.1 Identifying potentially corrupt bytes
In theory, one could simply treat the whole broken document

as symbolic and explore all feasible alternative paths. However,
this could lead DOCOVERY to generate a large number of complex
constraints, and to explore many alternative paths.

DOCOVERY aims to reduce the amount of symbolic data by treat-
ing as symbolic only those bytes which, when appropriately changed,
are likely to result in a recovery candidate. In order to identify such
potentially corrupt bytes, DOCOVERY uses a form of dynamic taint
tracking [7, 25], a technique which tracks the flow of information
from a set of sources—in our case the bytes in the document—to a
set of sinks—in our case the computation where the failure mani-
fests itself. The tracking is performed by associating a unique token
(‘taint’) with each byte in the input file, and then propagating these
taints whenever an instruction is executed—e.g., the instruction
x=file[0]+file[1] would propagate the taints of file[0] and
file[1] to variable x. The final result of this analysis is a set of
document bytes whose values are likely to be involved in the failure.

Our analysis is both unsound (i.e., it may miss relevant bytes)
and imprecise (i.e., it may include irrelevant ones). In general, we
have opted for higher precision, that is, we tried to minimise the
number of irrelevant bytes included; this limits the search space for
recovery candidates, because fewer bytes are made symbolic and
thus fewer bytes can be changed to create recovery candidates. In
our evaluation (§5), we have never encountered a situation in which
too few bytes were selected to allow recovery, but if this happens, it
is possible to revert to a conservative taint analysis or simply include
all the bytes in the document.

The design decisions that we have taken for our taint tracking im-
plementation are as follows, all motivated by the goal of minimising
the number of bytes selected by the analysis:

• Byte-level precision. Our taint tracking mechanism operates
at the level of individual bytes, i.e., for every tracked byte we
store the information about a set of document bytes that might
have influenced the value of that byte.



Figure 4: Illustration of alternative execution paths. The right-
most path is the one followed by the broken document, and c1,
c2 and c3 are the constraints collected on this path. Paths p1, p2
and p3 are alternative execution paths: p2 and p3 are feasible,
while p1 is infeasible.

• No control-flow dependencies. We only track data-flow de-
pendencies, i.e., we do not propagate taints that are associated
with control-flow branch points.

• No address tainting. When an address (pointer) is computed
based on the data in the input document, we do not propagate
taints from the address to the target of a read/write memory
operation.

To illustrate the computational overhead associated with treating
the entire document as symbolic, we performed experiments using
the smallest file in each of our benchmarks (which are described
in §5). We measured the time taken to generate the first recovery
candidate when the whole document is treated as symbolic, and
when only the bytes identified by our taint tracking analysis are
treated as symbolic. In both cases, we set a timeout of one hour and
collected at most 500 alternative paths in the manner described in
§3.2 and §3.3.

Table 2 shows that taint analysis significantly reduces the time
needed to generate the first recovery candidate. In particular, when
treating the whole document as symbolic in pr, pine and dwarf-

dump, DOCOVERY cannot generate any recovery candidates within
one hour, whereas when treating only the identified bytes as sym-
bolic, DOCOVERY generates a recovery candidate in 5.1s, 338.9s
and 2.8s, respectively.

3.2 Lazily collecting alternative paths
After the potentially corrupt bytes are identified, the next step

involves treating these bytes as symbolic and running the application
on the broken document in order to collect alternative execution
paths, i.e., those paths where execution could diverge from the
one followed by the broken document if the identified bytes were
changed. The process is illustrated graphically in Figure 4.

While each branch point involving symbolic data could potentially
provide an alternative path, not all such paths are feasible. For
example, if the program first follows a branch on which x > 10 and
afterwards encounters the branch point if x > 5, then the alternative
path (x ≤ 5) is not feasible at this point, as x is already constrained
to be > 10 (and thus > 5).

Determining whether an alternative path is feasible requires a call
to the constraint solver, which is expensive. With the large number
of branch points encountered on real execution paths, this would
likely exhaust the entire time budget at this stage. As a result, our
approach is to collect all paths diverging from the path followed

Figure 5: Overview of the recovery candidate creation process.

by the broken document—both feasible and infeasible—and lazily
verify their feasibility only when they are selected for execution.

The drawback of this lazy approach is that we potentially need to
store a large number of paths and memory consumption can become
an issue. In order to tackle this problem, our strategy is to store
only the last N alternative paths for further processing. The intuition
behind this strategy is that alternative paths which are closer to the
fault are more likely to result in candidate documents that are similar
to the original document, because their PCs will share a larger prefix
with the PC of the original execution (which is already satisfied by
the bytes in the original document).

To illustrate the need for lazily collecting paths, let’s consider
two experiments on the readelf debug information display utility,
one of the benchmarks we explore in §5. For the first experiment,
we selected a small 54KB file which we marked as symbolic in its
entirety. When the constraint solver was used to check alternative
path feasibility at branch points, the first candidate was generated
after 1,267s, compared with only 14.8s when lazy path collection
was used.

To show the need to limit the number of collected paths, we ran
another experiment, this time using a much larger 1.5MB file, in
which we only marked as symbolic the bytes identified by taint
tracking, and collected paths in a lazy manner. When only the last
500 alternative paths were collected, the time needed to create the
first recovery candidate was approximately 46s and the memory
consumption was below 172MB. However, when all the alternative
paths were collected, it took approximately 242s to create the first
candidate and the memory consumption reached 7.3GB. This large
memory footprint is due to the large number of alternative paths
stored, which was over 67,000 in this case.

3.3 Path selection
Our approach to path selection is to choose paths in decreasing

depth: we start from the deepest path and after that one is explored
we take the next deepest and so on, until all N collected alternative
paths are exhausted. In the example from Figure 4, path p3 will be
selected first, then path p2. Similar to the argument presented in §3.2,
the rationale behind this path selection strategy is to first choose
paths that are closer to the bug, i.e., those which share a longer prefix
of the PC with the original execution path. Intuitively, since the
bytes in the original document already satisfy the conditions on the
shared prefix, this strategy should reduce the number of bytes that
need to be changed to make execution follow the alternative path.
Path p3 shares constraints c1 and c2 with the original execution path,
whereas path p2 has only constraint c1 in common.

3.4 Creating recovery candidates
An essential part of DOCOVERY is the creation of recovery candi-

dates that take the program along an alternative execution path and
retain a high level of similarity to the broken document. A diagram



presenting DOCOVERY’s candidate creation process is depicted in
Figure 5. There are several inputs to the process:

• The broken document. All the bytes that do not need to be
changed in the candidate file in order to follow the alternative
path are left unchanged.

• The set of potentially corrupt bytes, as identified by the
taint tracking algorithm presented in §3.1. These are the bytes
that are made symbolic in order to explore alternative paths.

• The path condition (PC) associated with a given alterna-
tive path, which is fed to a constraint solver to select new
values for the symbolic bytes that make execution follow the
alternative path.

The output of the recovery candidate creation process is a recovery
candidate document that (1) obeys the constraints in the PC of the
alternative path and (2) is similar to the broken document. Another
way to see this is that we want to make the modified document
satisfy the PC of the alternative path while changing as few bytes as
possible.

There are two possible strategies that can be employed to create
recovery candidates: a satisfying assignment-based approach, which
is simple, but also potentially changes more bytes than necessary,
and a precise algorithm, which changes fewer bytes but may require
more calls to the constraint solver that can be expensive. Below, we
present each of these strategies.

3.4.1 Satisfying assignment-based approach
As mentioned in §2, a satisfying assignment is a sample set of

values that satisfy a logical formula. In the context of document
recovery, it is a sample set of input bytes which take the program
along the execution path characterised by the given PC. The sim-
plest approach for creating document recovery candidates is to take
the PC for the given alternative path and ask the constraint solver for
a satisfying assignment to all the potentially corrupt bytes. Then, the
values returned by the solver need to be assigned to the correspond-
ing bytes in the file, while the rest of the bytes remain unchanged.

The problem with this simple approach is that we do not have
any influence on the values returned by the solver. The values in the
satisfying assignment will obey the PC, but they will not necessarily
be similar to the original file. However, this issue is alleviated by
our strategy of modifying only the bytes identified by taint tracking.
In our experiments, the largest number of potentially corrupt bytes
identified in the taint tracking phase was 25. Even if all these bytes
are changed in the satisfying assignment returned by the constraint
solver, they represent only a small fraction of the total file size.

3.4.2 Precise algorithm
For more precision when creating recovery candidates, we also

used an algorithm that tries to minimise the number of changed
bytes. The algorithm, already implemented by KLEE and ZESTI
in another context, iterates over each potentially corrupt byte bi in
the original file, and asks the solver whether its value vi obeys the
new PC. If that is the case, the constraint bi = vi is added to the
PC. This process can be expensive if many bytes are identified as
potentially corrupt, because it involves one solver query for each
such byte. On the other hand, if only a relatively small number
of bytes are identified as potentially corrupt, as is the case in our
experiments, the overhead of the algorithm is acceptable.

3.4.3 Constraint independence optimisation
To optimise the candidate creation algorithm, we remark that

after selecting one of the alternative execution paths, it is only the
last constraint that makes some of the byte values invalid (i.e., not
feasible on the alternative execution path), because the prefixes of
the PCs for the original and alternative paths are the same for the two
executions. One optimisation that we use in both candidate creation
algorithms is to eliminate all the potentially corrupt bytes that do
not interact with the last constraint, either directly or indirectly. In
other words, we compute the transitive closure of the constraints
dependent on the last constraint; any bytes not involved in the tran-
sitive closure can be left unchanged in the file. For example, in our
toy program in Figure 1, when we follow the alternative path with
PC (x ≥ ’5’) ∧ ¬(y ≥ ’5’), the transitive closure consists solely of
the last constraint. Since the first byte in the file (stored in variable
x) is not involved, we know we can leave its value unchanged. Note
that this optimisation makes use of the constraint independence pass
introduced in [5].

3.5 Candidate validation
After a recovery candidate is created, DOCOVERY still needs to

check that execution does not hit another bug. DOCOVERY guaran-
tees that the candidate follows a different path but does not guarantee
that it is correct.

We re-execute the program natively as soon as the candidate
document becomes available, and check that it behaves correctly. As
discussed in the overview, we currently only check that the program
does not crash, does not terminate with a non-zero return code, and
does not output an error message. To account for bugs that cause
the program to hang, we set a timeout. If the timeout is exceeded,
we discard the candidate document.

3.6 Analysing candidate similarity
The output of DOCOVERY is a set of recovery candidates that

do not crash the program and retain a high level of similarity to
the broken document. In order to quantify the similarity of the
candidates to the broken document, we employ a metric based on
the Levenshtein distance.

The Levenshtein distance [17], also known as edit distance, is
a byte-level similarity metric. The two documents are treated as a
sequence of bytes, and their edit distance is the minimum number
of byte insertions, deletions or substitutions required to change one
document into the other.

As discussed in the overview, the degree of similarity between
two documents ultimately depends on the specific file type, but in
the absence of a high-level document specification, the edit distance
can be a useful proxy for many document types. Users are presented
with all the recovery candidates generated within a certain amount
of time ordered by their edit distance to the broken document. It is
up to them to choose the most appropriate candidate.

4. IMPLEMENTATION
We implemented our prototype system on top of the KLEE [4]

symbolic execution engine, using the concolic execution function-
ality from ZESTI [20]. Each analysed program first needs to be
compiled into LLVM [16] bitcode, the representation on which
KLEE operates. We currently use a modified version of the whole-
program-llvm2 script for the compilation process. LLVM was
configured to emit bitcode in which switch statements are repre-
sented as if statements.

2https://github.com/travitch/whole-program-llvm



Table 3: Benchmarks used to evaluate DOCOVERY.

Application Document type Document size
App specific Kilobytes

pr plain text 4.4K–1080K chars 4.4–1080
pine MBOX mailbox 5–320 e-mails 13–2314

dwarfdump executable test, ln, tac, dwarf-
dump, dwarfdump2 62–1088

readelf object file

strstrnocase.o

54–1615

print_types.o
naming.o
print_abbrevs.o
dwconf.o
print_frames.o

Since KLEE keeps track of all memory objects in the program,
it can detect memory problems at the point where they occur. The
ability to detect errors early makes it possible to avoid running the
program after the error occurs and simplifies the recovery process.

DOCOVERY collects alternative execution paths in a FIFO queue
of a configurable size. As the execution proceeds, paths associated
with more shallow branch points are removed from the queue and
deeper paths are inserted.

5. EVALUATION
Our experimental evaluation aims to provide information regard-

ing the scalability of the technique, the types of programs and docu-
ments to which it is applicable, and its limitations.

We used an HP Compaq 8200 Elite CMT machine with an In-
tel Core i7-2600 CPU at 3.4GHz, 16GB of RAM and a Seagate
ST500DM002-1BD14 SATA HDD, running Ubuntu 12.04 LTS.

5.1 Benchmarks
We evaluate our prototype system on four C applications process-

ing various types of documents (see Table 3). We have manually
injected faults into documents to trigger previously reported bugs
in each of the applications. So the bugs are real but the broken
documents are synthetic. For each application, we tested documents
of various sizes. Below, we provide a brief overview of each appli-
cation and the corresponding bugs triggered by broken documents.
pr: a paginating tool. This tool is part of the GNU Coreutils

application suite, available in virtually all Linux distributions. It has
1,712 lines of code (LOC) and is linked against the libcoreutils
library, which has about 39,600 LOC.3 pr takes as an input a text file
and paginates it according to a user specification. To create broken
documents, we have used a buffer overflow bug in pr reported in [4],
present in Coreutils 6.10. We trigger the error by inserting a
‘buggy’ sequence of one hundred backspace characters followed
by a tabulation. The command line that we used is pr -e300

file.txt.
We have tested recovery on synthesised text documents of sizes

varying from 4.4KB to 1.1MB. The documents were a sequence
of single paragraphs of Lorem ipsum4 text, 80 characters wide. We
injected the ‘buggy’ sequence at the end of each file.
pine: an e-mail client. pine is a text-mode e-mail client, which

is orders of magnitude bigger than pr, at around 220,000 LOC;
we statically linked pine with the ncurses 5.9 library, which has
about 76,000 LOC. We used a known bug5 that causes older ver-
sions of pine to crash while displaying a message index containing

3All measurements are done using the cloc tool.
4https://code.google.com/p/lorem-ipsum-generator
5http://www.securityfocus.com/bid/6120

a specially crafted e-mail; we used version 4.44 in our experiments.
The bug is triggered by a From field in which the sender e-mail
address has multiple escaped double quote characters placed be-
fore the @ character. The exact address that we used is “\“ ...

“@host.fubar, with the highlighted part repeated 30 times. This
bug may prevent users from accessing their mailbox, despite the fact
that all the other e-mail messages are valid.

In order to successfully recover pine mailboxes with our proto-
type, we instrumented the program to indicate when it is done load-
ing a mailbox. Annotating the program to detect that the document
was loaded correctly would be needed in other similar interactive ap-
plications. We used the following command line arguments to jump
directly to a message index displaying the problematic e-mail and
used a custom .pinerc configuration file to set additional options:
pine -i -p ./.pinerc -n[6|11|21|41|81|161|321]

(the numbers correspond to the corrupt e-mail number).
Recovery was tested with mailboxes of sizes varying from 5 to

320 e-mails. We injected the ‘buggy’ message at the end of each
mailbox. The injected message did not have a subject and a body.
The size of the corresponding mailbox file ranged from 13KB to
2.3MB.
dwarfdump: a debug information display tool. This utility is

used to read and display debugging information stored in DWARF
format. In contrast to the first two applications, dwarfdump operates
on binary files. We used version 20110612 of dwarfdump6 and
version 0.8.13 of its libelf7 dependency.
dwarfdump has about 12,500 LOC and the linked libraries lib-

dwarf and libelf have about 21,700 and 5,500 LOC respectively.
The bug that we used for our benchmark was reported in [20] and
is triggered by setting a specific byte in the file to zero, which
causes a division-by-zero error during a sanity check done by the
program. We used two different command lines: dwarfdump file

and dwarfdump -r file.
We tested recovery with five executable files, listed in Table 3,

with sizes ranging from approximately 60KB to 1MB, in which we
injected the fault described before.
readelf: an ELF file display tool. The purpose of the readelf

utility is to dump information about object files in the ELF format.
We used readelf from binutils revision 6e09faca, whose size
is 11,510 LOC; the size of the linked libiberty library is 28,900
LOC. The bug that we used for our tests was reported in [21].
It is triggered when the user wants to print out the contents of the
.debug_ranges section of the ‘buggy’ file and the relocation offset
of the section is negative. This results in a buffer overflow and a
program crash. We used the command line readelf -wR file.

We have prepared six object files extracted from the dwarfdump2
utility of the libdwarf-code package (the same revision used for
the dwarfdump tests), with sizes ranging from approximately 54KB
to 1.5MB. We injected faults into these files by setting the relocation
offset to 0xFD FF FF FF FF FF FF FF.

5.2 Taint tracking results
Table 4 summarises the results of running the taint tracking algo-

rithm described in §3.1. The third column shows the total number of
potentially corrupt bytes identified by the algorithm, while the last
column lists those bytes, using angle brackets to denote a comment.
pr. The taint tracking algorithm selected a single byte, namely

the tabulation character (hexadecimal value 0x09) from the ‘buggy’
sequence.

6git://git.code.sf.net/p/libdwarf/code
7http://www.mr511.de/software



Table 4: Taint tracking results.

Application Document Number of potentially Potentially corrupt bytescorrupt bytes
pr 4.4K–1080K chars 1 ...0x08<repeated 100 times>0x09EOF

pine 5–320 e-mails 25 “\“\“\“\“\“\“\“\“\“\“\“\“\“\“\“\“\“\“\“\“\“\“\“\“\“...@host.fubar

dwarfdump
test, ln, tac, dwarf-
dump, dwarfdump2 2 GCC: (Ubuntu/Linaro 4.6.3-1ubuntu5) 4.6.3<11 bytes>..<hex 0x00 00>

readelf

strstrnocase.o

16

0x007B38:40 01 00 00 00 00 00 00...0x00D3B8:FD FF FF FF FF FF FF FF

print_types.o 0x00C178:50 09 00 00 00 00 00 00...0x0180B8:FD FF FF FF FF FF FF FF

naming.o 0x0159C0:80 18 00 00 00 00 00 00...0x02EC90:FD FF FF FF FF FF FF FF

print_abbrevs.o 0x02AF58:C0 3E 00 00 00 00 00 00...0x068848:FD FF FF FF FF FF FF FF

dwconf.o 0x052278:F0 B3 00 00 00 00 00 00...0x0C2230:FD FF FF FF FF FF FF FF

print_frames.o 0x099BC8:A0 06 01 00 00 00 00 00...0x16E758:FD FF FF FF FF FF FF FF

pine. In total, 25 characters were selected, namely the first 25
escaped quotation marks in the ‘buggy’ e-mail address (the address
is 73 characters long).
dwarfdump. Two consecutive bytes were identified, the first of

which was the byte that we previously corrupted. For readability
purposes, we provide in Table 4 an ASCII representation of the
relevant file fragment, although the files are binary.
readelf. The taint tracking algorithm selected two ranges of

eight bytes each, with the second range containing the ‘buggy’ value.
In Table 4, we show the bytes using the format
offset:potentially corrupt bytes in hexadecimal.

It is interesting to note that for all benchmarks, the same number
of bytes were selected by the taint tracking algorithm regardless
of the file size, e.g., for pine it selected 25 bytes regardless of the
mailbox size, which varied from 5 to 320 e-mails.

5.3 Performance
We have performed scalability tests for our benchmarks, checking

the recovery time for files of various sizes, starting with a small
document, and roughly doubling its size in each experiment. In
this section, we first comment on the results obtained using the
simple satisfying assignment-based candidate creation algorithm;
the performance of the precise algorithm is evaluated separately at
the end of the section.

DOCOVERY was configured to collect up to 500 alternative paths,
and to use a 5s timeout for the candidate validation step. The timeout
value was established by measuring the time needed to load the
documents being considered, which took typically less than 3.5s.

Figures 6–10 present the results. The first bar of each measure-
ment provides the interpretation time as a reference point. It corre-
sponds to running the application under DOCOVERY without mark-
ing the file as symbolic, until the bug is hit. This value represents
the time spent by the symbolic execution engine interpreting LLVM
bitcode. The second and the third bars represent taint tracking and
alternative paths collection times. The fourth bar is the cumulative
value of bars two and three and represents the time needed to prepare
for recovery. The fifth bar represents the time needed to generate
the first recovery candidate, measured from the beginning of the
recovery process. Finally, the last bar shows the total recovery time,
i.e., the time needed to exhaust all collected alternative paths.

Overall, the results show that the time spent on taint tracking
and alternative paths collection dominates the time needed to cre-
ate the first recovery candidate. Once these stages are completed,
generating recovery candidates is relatively quick.
pr. The performance results for pr are presented in Figure 6. The

time taken to generate the first recovery candidate was only a few
minutes for document sizes of up to 271KB, and more than half an
hour for the largest document tested. The time needed to create the
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Figure 6: pr performance measurements.

first recovery candidate once the alternative paths were collected
was less than one second for all document sizes.
pine. The results for pine are presented in Figure 7. As for pr,

the time taken to generate the first recovery candidate varied from
only a few minutes to around half an hour. The time needed to create
a first suitable recovery candidate once all the necessary tainting
and alternative paths information was collected was between 4.2s
and 114.3s. The higher than expected total recovery time for the
20 e-mail mailbox was the result of encountering multiple timeouts
during candidate validation.
dwarfdump. For dwarfdump, we have tested two scenarios: the

first one using the -r option, which makes the execution reach
the bug faster, and the second without this option. The results are
presented in Figures 8 and 9. The length of the execution until the
bug is reached can have a significant impact on performance: the
overall time taken to create the first recovery candidate was under
40s in the first scenario, and between a few minutes to almost an
hour in the second scenario. In both cases, DOCOVERY needed
under one second to create the first recovery candidate, once the
alternative paths were collected.
readelf. The results for readelf are presented in Figure 10. As

with the other benchmarks, once the alternative paths were collected,
the overall time needed to create the first candidate was small, at
under one second for all files.

Memory consumption. We measured memory consumption of DO-
COVERY itself, excluding the memory needed for the constraint
solver and native execution. The memory footprint of DOCOVERY
was not a problem: the maximum memory consumption among all
benchmarks never exceeded 880MB.
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Figure 7: pine performance measurements.
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Figure 8: dwarfdump performance measurements (with -r).

Performance of the precise candidate creation algorithm. Run-
ning times for the simple and the precise candidate creation algo-
rithms were similar—usually the difference between the two algo-
rithms was below 10% to generate the first recovery candidate, and
it took up to approximately 53% longer for the precise algorithm in
the worst case. Similar differences hold for the time to generate all
recovery candidates. Many times, the precise algorithm performed
better than the simple one. The performance differences are small
because taint tracking identifies only a small number of bytes, and
thus the precise algorithm only needs to perform a limited number of
additional calls to the constraint solver. For dwarfdump, the number
of calls for the precise algorithm was the same as for the simple one.

5.4 Recovery quality
In this section we evaluate the quality of the created recovery

candidates, based on the edit distance to the original document, and
our manual analysis of the recovered documents. Tables 5 and 6
present the number of candidates created per document for each
benchmark, as well as the minimum and the maximum edit distance
between a candidate and the broken document, across all document
sizes. Remember that by design DOCOVERY only changes the bytes
identified as potentially corrupt in the taint tracking step, so the
maximum number is at most equal to the number of potentially
corrupt bytes.
pr. DOCOVERY created three recovery candidates for each of the

input documents regardless of the document size and the candidate
creation algorithm used. All candidates differed in one byte from the
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Figure 9: dwarfdump performance measurements (without -r).
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Figure 10: readelf performance measurements.

broken file, namely the last byte of the ‘buggy’ sequence. Table 7
shows some examples of changes to the last byte’s value.8

We performed a manual examination of the results by running pr

natively on the created files. All of the candidate documents seem
to be printed out correctly including some text that we later added
after the changed byte. We did not notice any significant difference
between the candidates. The return code of the application was
always 0. Interestingly, the Null character 0x00 present in the first
candidate does not cause truncation of the output.
pine. When the simple candidate creation algorithm was used,

DOCOVERY created between 25 and 27 candidates which had one
or more of the escaped quotation marks changed. Some examples of
recovery candidates are shown in Table 8. When multiple characters
were changed, the value for the first one was either the control
character 0x0E (Candidate A) or backslash (Candidate B), and
the rest of the new values were control characters 0x0E; the edit
distance for these candidates ranged between 15 and 24. When only
one character was changed, the new value was the Null character
0x00 (Candidate C).

When the precise candidate creation algorithm was used, 8 candi-
dates were created for each of the tested mailboxes. All the candi-
dates differed in one byte from the original file, which was always
changed to the Null character in the recovered file (Candidate C).
The candidates created by using the precise algorithm were the

8Note that in general, the exact values chosen for the modified bytes can differ across
runs, due to non-determinism in the constraint solver and KLEE.



Table 5: Simple algorithm: an overview of recovery results.

Benchmark Candidates Edit distance
per document Min Max

pr 3 1 1
pine 25-27 1 24
dwarfdump 2 1 1
readelf 1-3 2 8

Table 6: Precise algorithm: an overview of recovery results.

Benchmark Candidates Edit distance
per document Min Max

pr 3 1 1
pine 8 1 1
dwarfdump 2 1 1
readelf 1-3 1 8

same as the candidates with edit distance 1 created by the simple
algorithm.

We verified all candidates manually by running pine natively
with each of them and opening the recovered message after the
mailbox was loaded; this discarded between 4 and 6 candidates for
each mailbox size, which caused a crash when the message was
opened.

The recovery candidates for pine illustrate the fact that the edit
distance is not always the best similarity metric. The mailboxes
with edit distance 1 were the ones which had one of the address
bytes changed to a Null character. As a result, the address in the
‘buggy’ e-mail was truncated in such candidates. For candidates
with a larger edit distance, the new values were such that it was still
possible to read the domain of the e-mail address.
dwarfdump. For each of the files, two recovery candidates were

created, both differing in one byte from the original file. The same
files were produced by using the simple and the precise candidate
creation algorithms. Table 9 shows the byte changes performed.

We verified the files by running dwarfdump natively on them.
For all file sizes, the execution of the first candidate finished with
a zero return code producing the debug information dump, while
the execution of the second candidate ended with an error (return
code 1).

We also compared the output of the program for the first candi-
date with that produced with the initial valid file and there were
differences.

Finally, since the recovered files are executables, we manually
confirmed that all the created candidates can still be executed by
running them and checking their basic functionality.
readelf. Three candidates were created for strstrnocase.o and

a single candidate for the other files. Table 10 presents the bytes
changed for the strstrnocase.o file, using the simple (Candidates
A, B, C with edit distances 8, 8 and 2) and the precise candidate
creation algorithms (Candidates D, E, F with edit distances 1, 8, 2).

We checked the created files by running readelf natively on
them. The application return code was always 0. We compared
the program output with the output produced when running the cor-
responding correct files. All the candidates, except for candidates
B, C, E and F of strstrnocase.o produced a warning and had the
beginning offset in the first printed row different than their corre-
sponding correct counterparts. The amount of output printed out
was otherwise the same as for the correct files. Candidates B, C, E
and F for strstrnocase.o produced almost no output: for candidate B

Table 7: Examples of recovery candidates for pr.

Document ‘Buggy’ sequence (hex)
Original ...09

Candidate A ...00

Candidate B ...0C

Candidate C ...0A

Table 8: Examples of recovery candidates for pine.

Document ‘Buggy’ sequence
Original ...“{\“}<30x>“@host...

Candidate A ...“{\“}<10x>{\0x0E}<15x>{\“}<5x>“@host...

Candidate B ...“\“\\{\0x0E}<23x>{\“}<5x>“@host...

Candidate C ...“{\“}<24x>\0x00{\“}<5x>“@host...

(and identical candidate E) an error was printed and for the candidate
C (and identical candidate F) the application did not find debug data
in the object file.

Since in readelf the tested documents are object files, we tried
to link each of the created candidates against the original program
(dwarfdump2). None of the files could be linked successfully. This
illustrates the fact that DOCOVERY is application specific: that is, in
this case the recovery is done with respect to readelf and not with
respect to the linking and executing the code in the object files.

For pr and pine, we injected the ’buggy’ sequences at the end
of the file because we expect the two applications to process their
input files sequentially. We also verified how DOCOVERY performs
for these applications when the ‘buggy’ bytes are injected before
the end of the file. For pr, we used the 541KB file and injected
the sequence after approximately 269KB. For pine, we used the
mailbox with 160 emails and injected the ’buggy’ message after the
80th email. The taint tracking algorithm selected the same number
of bytes as in the previous experiments. For pr, the same number
of recovery candidates were produced, while for pine, DOCOVERY
produced 23 candidates, out of which two were rejected because
they caused pine to crash. The running times were about 10%
higher for pr, and about 40% higher for pine, compared to the
corresponding documents of about half the size (271KB and 80
e-mails, respectively) that had the fault injected in the end.

6. LIMITATIONS
In §5 we demonstrated that our prototype can recover documents

for medium-sized applications. We illustrated recovery on unstruc-
tured text data (pr), semi-structured MBOX file format (pine) and
binary files (dwarfdump, readelf).

To show an example in which our approach does not work, let us
consider a bug present in version 1.0 of the MuPDF PDF processing
library.9 The bug is triggered in the parser’s own recovery procedure,
when it tries to discover the locations of object definitions in the
file. This procedure starts after encountering an invalid offset to a
cross-reference table that normally stores offsets of objects. If one
of the object numbers is corrupted, it can overflow to a negative
value and pass a sanity check inside the parser, which subsequently
leads to a buffer overflow and a crash of the program. We tried
to recover from this bug, but we were unable to create a recovery
candidate with the presented approach.

The challenge associated with this corrupted PDF file, and more
generally, with complex structured file formats are dependencies
between bytes in the document. In our example, even if we are
9http://www.exploit-db.com/exploits/23246



Table 9: Examples of recovery candidates for dwarfdump.

Document ‘Buggy’ sequence (hex)
Original ...0000...

Candidate A ...0100...

Candidate B ...0001...

Table 10: Examples of recovery candidates for readelf,
strstrnocase.o file, simple (A–C) and precise (D–F) candidate
creation algorithm.

Document ‘Buggy’ sequence (hex)
Original ...40 01 00 00 00 00 00 00...FD FF FF FF FF FF FF FF...

Candidate A ...40 01 00 00 00 00 00 00...F0 01 00 00 00 00 00 80...

Candidate B ...FE FF FF FF FF FF FF FF...FD FF FF FF FF FF FF FF...

Candidate C ...00 00 00 00 00 00 00 00...FD FF FF FF FF FF FF FF...

Candidate D ...40 01 00 00 00 00 00 00...FD FF FF FF FF FF FF 00...

Candidate E ...FE FF FF FF FF FF FF FF...FD FF FF FF FF FF FF FF...

Candidate F ...00 00 00 00 00 00 00 00...FD FF FF FF FF FF FF FF...

able to identify the incorrect object number as the source of the
problem, how to choose a new object number on the alternative path
remains an open question. In order to successfully recover this PDF
document in the mentioned scenario, we would need to change the
corrupt bytes to a valid object number, because this object can be
referenced by other objects by its number. By changing the number
to an arbitrary value, we may violate these inter-object dependencies
and thus create an invalid document. At the place where the program
crashes, we do not have enough constraints to choose the right value.
One possible solution would be to implement an iterative strategy,
in which we first recover from the original bug and if the recovered
document hits another bug, we use that document as the new input
to the recovery process.

Furthermore, our current approach and prototype have the follow-
ing limitations:

• Our approach cannot add or remove bytes during recovery. It
is limited to mutating existing bytes. This does not mean it
is limited to recovering from corruptions that mutate bytes.
It can sometimes recover documents that are corrupted by
adding bytes, as shown in our pr and pine benchmarks.

• Our approach cannot yet recover documents with several in-
dependent mutations.

• We only handle bugs that result in generic errors such as
program crashes, buffer overflows, and error return values.

• The current prototype does not support file modifications
during loading.

• The current prototype requires C source code, although our
approach could in principle work directly on binaries.

7. RELATED WORK
The work most closely related to DOCOVERY is that of Rinard

et al. [19, 24], who introduced the idea of input rectification. At
a high-level, their SOAP system starts with a learning stage, in
which the system learns a set of constraints characterising typical
inputs—for example, it may learn that the height of an image is
typically less than a certain value. Then, in the rectification stage,
inputs not obeying the constraints are modified to do so—e.g., the
image might be truncated to have its height within the limit inferred
during the learning phase. SOAP was successfully used to rectify

various media files like WAV or JPEG files that were crashing cor-
responding applications. Compared to DOCOVERY, SOAP scales
to much larger applications and document sizes, because enforcing
those constraints is much cheaper than using symbolic execution to
explore alternative paths. SOAP also does not require direct access
to the application code or binary. The key differences are that SOAP
requires a specification of the input format and a training set to learn
acceptable values for input fields. DOCOVERY does not require a
training set or any knowledge about the input format.

Demsky and Rinard [12] propose an approach for repairing data
structures starting from a manually-written formal specification.
This approach has been successful in recovering errors, e.g., in a
corrupted ext2 file system and in a Microsoft Word file, but the main
downside is that it requires developers to write a formal specification
for their data structures.

Similarly to DOCOVERY, prior research on vulnerability signature
generation, such as Vigilante [9], Bouncer [8] and ShieldGen [10],
proposes to monitor the execution of malicious inputs to infer byte-
level constraints that characterise such inputs. However, unlike
DOCOVERY, the goal is not to modify but to discard such inputs.

An alternative approach to changing the document in order to
avoid an error is to change the code of the application itself. Auto-
matic generation of code patches can be accomplished using sym-
bolic execution [22], invariant enforcement [23], genetic program-
ming [2, 30] and various heuristics [18, 27, 28].

Taint analysis and symbolic execution are well-known program
analysis techniques that have been used in a variety of contexts,
such as testing [1, 13, 14, 21, 29], debugging [7] and attack genera-
tion [3, 31], just to name a few. DOCOVERY uses and adapts these
techniques in the context of document recovery.

8. CONCLUSION
One of the most visible and frustrating defects of consumer soft-

ware are application crashes and errors experienced while trying to
load a document. In this paper, we presented DOCOVERY, a novel
document recovery technique based on symbolic execution. Unlike
prior approaches, DOCOVERY does not require any knowledge about
the document format, which makes it applicable to a wide range
of applications. The key idea behind DOCOVERY is to start from
the code path executed by the broken document, explore alternative
paths that avoid the error, and finally make small changes to the
document in order to force the application to follow one of these
alternative paths.

We applied DOCOVERY to popular applications such as the e-
mail client pine, the pagination tool pr and the binary file utilities
dwarfdump and readelf, for which it has managed to recover
documents of various sizes, typically within minutes. While these
preliminary results are encouraging, we still need to overcome sev-
eral important challenges in order to make DOCOVERY practical:
dealing with complex structured formats, supporting the addition
and removal of bytes, and scaling to larger documents.
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